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Abstract

The U.S. residential real estate agency market presents a puzzle for economic theory:
commissions on real estate transactions have remained constant and high for decades
even though agent entry is frequent and agents’ costs of providing service are low.
We model the real estate agency market, and other brokered markets, via repeated
extensive form games; in our game, brokers first post prices for customers and then
choose which agents on the other side of the market to work with. We show that
prices appreciably higher than the competitive prices can be sustained (for a fixed
discount factor) regardless of the number of brokers; this is done through strategies
that condition willingness to transact with each broker on that broker’s initial posted
prices. Our results can thus rationalize why brokered markets exhibit pricing high
above marginal cost despite fierce competition for customers; moreover, our model can
help explain why agents and platforms who have tried to reduce commissions have had
trouble entering the market.
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1 Introduction

The real estate industry in the United States is characterized by widespread price coordination:

The brokerage fee is typically 6%, with half of the fee going to the buyer’s agent and half

going to the seller’s agent. There is little evidence that the 6% fee represents the true cost of

facilitating a real estate transaction: it has been constant for decades (despite substantial

changes in the technology used), varies with neither market conditions nor the price of the

house being sold, and is appreciably higher than in many other countries (Delcoure and MillerDelcoure and Miller,

20022002). Indeed, a number of lawsuits have recently been filed arguing that realtors conspire

to keep commissions high.11 Yet the market for providing residential real estate brokerage

services is both highly unconcentrated and quite easy to enter (Beck et al.Beck et al., 20122012), and so we

might naturally expect price competition to drive down fees; indeed, as Hsieh and MorettiHsieh and Moretti

(20032003) remark in their influential study of real estate brokerage in the U.S., “the apparent

uniformity of commission rates presents an enormous puzzle”.22

We provide a potential explanation for how the real estate brokerage industry can maintain

high prices even in the presence of many independent brokers. We model the market for

brokerage services as a repeated extensive form game: In each period, a continuum of buyers

and sellers seek to buy and sell houses; buyers and sellers, however, are unable to transact

directly and must instead work through agents. Each agent offers a buyer price and a seller

price for intermediation services; buyers and sellers then choose agents having observed these

menus of prices. Once buyers and sellers have agents, each agent decides which other agents

he is willing to work with; facilitating a transaction between a buyer and a seller requires

both the buyer’s agent and the seller’s agent to be willing to work with each other.

In our setting, agents can maintain high prices by refusing to work with any agent who
1See Moehrl v. NAR et al. (U.S. Dist. Ct. N.D. Ill., Case No. 1:19-cv-01610), Sawbill Strategic, Inc. v.

NAR et al. (U.S. Dist. Ct. N.D. Ill., Case No. 1:19-cv-02544), and Sitzer and Winger v. NAR et al. (U.S.
Dist. Ct. W.D. Mo., Case No. 4:19-cv-00332).

2Similarly, Levitt and SyversonLevitt and Syverson (20082008) and Bernheim and MeerBernheim and Meer (20132013) argue that real estate agents
provide poor service at high prices despite effectively free entry into real estate agency. Additionally,
Barwick and PathakBarwick and Pathak (20152015) argue that the current market structure is inefficient, with excessive commissions
and too many agents; see also work by Barwick et al.Barwick et al. (20172017).
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undercuts either of the “agreed upon” buyer and seller prices. This endogenously lowers the

quality of a price deviator: a price deviator can no longer facilitate transactions between

his buyers and another agent’s sellers (or between his sellers and another agent’s buyers).

This implies that cutting prices by a small amount is not enough to attract buyers and

sellers, as they understand that any price deviator will find it much more difficult to facilitate

transactions. As a result, it is possible to maintain prices above marginal cost while ensuring

that a price deviator who does attract buyers and sellers will not profit from his actions.

Of course, it must be incentive compatible for agents to refuse to work with a price

deviator. Here, we rely on the repeated interactions between agents: A non-price deviating

agent is willing to forego working with a price deviator today if he is sufficiently rewarded for

doing so in the future. First, the non-price deviating agent’s foregone profits are small, since

the non-price deviating agent only has a small fraction of the buyers and sellers. Second, the

non-price deviating agent is incentivized to follow the prescribed punishment strategy as, if

he does not, future play reverts to a no-profit equilibrium; by contrast, if every non-price

deviating agent punishes the price deviator as prescribed, future play moves to a collusive

punishment phase in which every agent other than the price deviator obtains positive rents.

Thus, a non-price deviating agent will be willing to forego working with a price deviator

today for reasonably high discount factors.

Our equilibrium is necessarily more complex than one constructed with simple penal

codes à la AbreuAbreu (19881988). In repeated normal form games, AbreuAbreu (19881988) demonstrated that

simple penal codes are sufficient for implementing maximally collusive strategies. By contrast,

Mailath et al.Mailath et al. (20172017) noted that the analysis of repeated extensive form games may require

more involved responses to deviations; the need to reward within-period punishments implies

that rewarding agents in future periods may be more important than just punishing the initial

deviator as much as possible.33 In our model, this need to reward agents who punish in-period
3It is not sufficient in general to consider the repeated version of the reduced normal form game, as the

equilibria of that game will not necessarily correspond to subgame-perfect equilibria of the original repeated
extensive form game.
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is crucial: we cannot simply revert to the no-profit equilibrium after an agent undercuts on

prices as other agents must be incentivized to forgo working with a price deviator in the

period of deviation.

Our analysis not only explains how real estate agents may maintain prices appreciably

above cost, but also enables us to assess different policy responses that have been suggested.

Han and HongHan and Hong (20112011) investigated “rebate bans,” laws that prohibit buyers’ agents from

sharing their commissions with buyers (although agents are still allowed to pay buyers’ closing

costs); ten states have rebate bans in effect. We show that rebate bans facilitate higher

agency fees even though they still offer room for real estate agents to reduce buyers’ (closing)

costs; eliminating such bans would reduce (though not eliminate) the scope for collusion.

Our finding on rebate bans is consistent with the views of the Department of JusticeDepartment of Justice (20052005)

as expressed in their complaint in U.S.A. v. Kentucky Real Estate Commission; indeed, our

findings even accord with surprisingly candid remarks of the real estate agents themselves.44

Meanwhile, BarwickBarwick (20182018) has suggested banning “agency fees,” i.e., the commissions

that a seller agent pays to a buyer agent upon the completion of a transaction; as BarwickBarwick

(20182018) noted, countries that have adopted this policy have lower overall agency fees (even

though fees for buyers increase). In our framework, the optimal collusive scheme involves

fully exploiting sellers while possibly charging buyers less than cost. Eliminating agency fees

makes charging buyers less than cost non-viable, since agents would no longer be willing to

represent buyers. Thus, prices would adjust upwards for buyers but would fall for sellers, and

we show that consequently the net agent surplus extracted in the highest-profit equilibrium

decreases.

The remainder of this paper is organized as follows: Section 22 lays out our model. Section 33

characterizes the optimal collusive prices. Section 44 considers the implications of our work for

policy: Section 4.14.1 considers the effects of rebate bans on prices, and Section 4.24.2 considers
4The Department of JusticeDepartment of Justice (20052005) reports one real estate agent remarking “[A market without rebate

bans] would turn into a bidding war, lessen our profits and cheapen our ‘so-called’ profession.” For other
remarks by real estate agents, see Appendix AA.
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the effects of eliminating agency fees on prices. Section 55 concludes.

2 Model

2.1 Framework

We introduce a model of brokered buyer–seller markets. There is a finite set of agents A;

we let α ≡ 1
|A| be the market concentration. Moreover, there is an infinite sequence of unit

intervals of short-lived buyers {Bt}t∈N and an infinite sequence of unit intervals of short-lived

sellers {St}t∈N. Each agent has a buyer capacity κB and a seller capacity κS; we assume that

κB ≥ κS. We require that both κB and κS are less than 1
2 ; that is, no agent can represent

more than half of the buyers in any given period, and no agent can represent more than half

of the sellers in any given period. We also require that (|A| − 1)κB ≥ 1 and (|A| − 1)κS ≥ 1;

that is, all of the buyers and all of the sellers can be assigned an agent even if one agent is

excluded from the economy. Time is discrete and infinite; agents discount the future at the

rate δ ∈ (0, 1).

In each period t, the agents, buyers, and sellers play the following extensive-form stage

game:

Step 1: Each agent a ∈ A offers a buyer price paB,t ∈ R and a seller price paS,t ∈ R. All prices

are publicly observed.

Step 2: Each buyer b ∈ Bt submits an ordered list of a subset of agents; that is, each

buyer reports a ranking over the set of agents, with unlisted agents being unacceptable.

Buyers are then assigned via random rationing such that no agent is assigned a mass of

more than κB buyers.55 We denote the agent representing buyer b as a(b), where we let

a(b) ≡ ∅ if b is unassigned to any agent (i.e., ∅ represents the outside option); moreover,
5This procedure is the generalization of a random serial dictatorship to settings with a continuum of

agents. We formally define the allocation of buyers and sellers to agents given the buyers’ and sellers’ rankings
in Appendix BB.
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we denote the set of buyers assigned to agent a in period t as Bt(a) ≡ {b ∈ Bt : a(b) = a}.

Similarly (and simultaneously), each seller s ∈ St submits an ordered list of a subset of

agents; that is, each seller reports a ranking over the set of agents, with unlisted agents

being unacceptable. Sellers are then assigned via random rationing such that no agent

is assigned a mass of more than κS sellers. We denote the agent representing seller s as

a(s), where we let a(s) = ∅ if s is unassigned to any agent; moreover, we denote the

set of sellers assigned to agent a in period t as St(a) ≡ {s ∈ St : a(s) = a}. The set of

buyers and sellers represented by each agent is publicly observed.

Step 3: Each agent a invites a set of other agents. Each invitation includes a contingent

(agency) fee f ã←at ∈ R that will be paid per transaction to the buyer’s agent ã from the

seller’s agent a.

Step 4: Each agent a accepts or rejects each invitation that he receives. We denote the

set of agents that a invites and that accept a’s invitation, along with a, as A⇒at . We

denote the set of agents that a accepts invitations from, along with a, as Aa⇒t . After

invitations are accepted or rejected, each invitation (along with its associated fee) as

well as whether that invitation is accepted is publicly observed.

We can think of the set of accepted invitations as generating a (directed) network, where a

link from ã to a represents the fact that ã has accepted a’s invitation. We say that a complete

network forms among agents Ā if, for every distinct ã, a ∈ Ā, we have that ã has accepted

a’s invitation (where we use the convention that Ā = A when Ā is unspecified).

Once the network has formed, we model the housing market as a market where each

buyer has a unique acceptable seller and each seller has a unique acceptable buyer. LetMt

be a bijective correspondence between Bt and St unknown to all market participants. The

correspondenceMt is a reduced-form way of modeling the preferences of buyers and sellers:

for a given buyer b,Mt(b) ∈ St represents the unique seller whose house is a match for buyer

b. A buyer b will consummate a transaction with a seller s if and only if s’s agent, a(s),
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invited b’s agent, a(b), and a(b) accepted a(s)’s invitation, i.e., a(s) ∈ Aa(b)⇒. We call the

fixed value that a buyer receives from a transaction the buyer surplus vB and, similarly, the

fixed value that a seller receives from a transaction the seller surplus vS.

Thus, the stage-game payoffs are as follows:

1. The expected payoff for buyer b in period t is given by
(
vB − pa(b)

B,t

)
| ∪a∈Aa(b)⇒ St(a)|.

That is, the payoff for b is the net value of a purchase for b times the measure of sellers

connected to b (which gives the probability of a transaction for b).

2. The expected payoff for seller s in period t is given by
(
vS − pa(s)

S,t

)
| ∪a∈A⇒a(s) Bt(a)|.

That is, the payoff for s is the net value of a sale for s times the measure of buyers

connected to s (which gives the probability of a transaction for s).

3. The expected payoff for an agent a in period t is given by the total revenue from buy-

and sell-side transactions:

∫
Bt(a)

∫
S

(
paB,t + f

a←a(s)
t

)
︸ ︷︷ ︸
Transaction profit

1{
a∈A⇒a(s)

t

}
︸ ︷︷ ︸
a invited by a(s)
and a accepted

1{Mt(b)=s}︸ ︷︷ ︸
b and s correspond

ds db

︸ ︷︷ ︸
Profits as a buy-side agent

+
∫

St(a)

∫
B

(
paS,t − f

a(b)←a
t

)
︸ ︷︷ ︸
Transaction profit

1{
a∈Aa(b)⇒

t

}
︸ ︷︷ ︸
a(b) accepted
a’s invitation

1{Mt(s)=b}︸ ︷︷ ︸
b and s correspond

db ds

︸ ︷︷ ︸
Profits as a sell-side agent

,

which reduces to

|Bt(a)|
∑

ã∈Aa⇒

(
|St(ã)|(paB,t + fa←ãt )

)
+ |St(a)|

∑
ã∈A⇒a

(
|Bt(ã)|(paS,t − f ã←at )

)
.
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2.2 Equilibrium Definition

In our setting, perfect collusion can be sustained even in the stage game via coordinated

behavior by buyers and sellers. To see this, note that we can support any non-negative

prices in a subgame perfect Nash equilibrium of the stage game by having buyers and sellers

“coordinate” on not signing up with any agent if some agent deviates on prices. This is

achieved by having both buyers and sellers refuse to sign up with any agent if prices are not

as expected; this is an equilibrium because it is (weakly) optimal for no seller to sign up with

any agent if no buyers sign up with any agent and, similarly, it is (weakly) optimal for no

buyer to sign up with any agent if no sellers sign up with any agent; this is a version of the

classic indeterminacy of equilibrium in platforms result (WeylWeyl, 20102010).

The coordination failure equilibria just described are unrealistic in our setting, as they

involve a very large number of buyers and sellers coordinating amongst themselves to facilitate

collusion by agents. Moreover, a version of the model with a finite number of buyers and

sellers who sign up for agents sequentially would not admit such coordination failure equilibria;

further, such equilibria would not be robust to allowing firms to offer insulating tariffs à la

WeylWeyl (20102010) and White and WeylWhite and Weyl (20162016). That is, if brokers can promise to compensate end

users if the anticipated number of users on the other side do not show up, coordination failure

by end users cannot be used to support collusive equilibria. To avoid pathological outcomes,

we thus restrict attention to (buyer-and-seller) coordination-proof equilibria, which require

that no positive mass of buyers and/or sellers can (by altering their actions simultaneously)

strictly improve the expected welfare of all of them. Formally, a subgame-perfect Nash

equilibrium is (buyer-and-seller) coordination-proof if, fixing the strategy profile of the agents,

for every period t, there does not exist a positive measure subset B̄ of buyers and/or positive

measure subset S̄ of sellers that can, in the agent selection phase, jointly submit different

ordered lists that result in higher expected utility for each market participant in B̄ ∪ S̄. Our

equilibrium restriction prevents mis-coordination amongst buyer and sellers as a mechanism
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to support higher prices.66

3 Optimal Collusion

We now characterize the highest profits that can collectively be achieved by the agents. We

say that a level of total industry profits is sustainable if there exists a coordination-proof

subgame-perfect Nash equilibrium in which, along the equilibrium path, the total profits

obtained by all agents reach that level.

Theorem 1. For δ ≥ 1
2 , the highest sustainable industry profits are achieved with prices

p?B =


vB α ≥ (1− δ)κBκS

(1−δ)κB(vB−κS(vB+vS))+αvS
(1−δ)κB−α α ≤ (1− δ)κBκS

p?S = vS.

Moreover, limα→0(p?B + p?S) = (vB + vS)(1− κS) > 0.

Figure 11 plots the prices offered to buyers and sellers in the highest sustainable profit

equilibrium as a function of the market concentration. In this figure, even as market

concentration goes to 0, the seller price remains at the seller surplus vS; meanwhile, the buyer

price falls (nonlinearly) toward vB − κS(vB + vS). In general, when the market concentration

goes to 0, the buyer price can be positive, i.e., above marginal cost, or negative, i.e., below

marginal cost. In Figure 11 the buyer price remains positive for all market concentrations, but

it would become negative if the buyer surplus vB were low enough.

Buyers are offered better prices than sellers in the highest sustainable profits equilibrium,

and those prices may in fact be negative. However, the reason for subsidizing buyers is not
6Our refinement here is in the spirit of coalition-proofness à la Bernheim et al.Bernheim et al. (19871987) among the short-lived

buyers and sellers. Alternatively, one could use a suitably adapted version of the coalitional rationalizability
concept introduced by AmbrusAmbrus (20062006) to avoid this type of mis-coordination among short-lived buyers and
sellers.
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Figure 1: The prices supporting the highest sustainable profit equilibrium. The dark red line
is the price agents charge to sellers, p?S, and the light green line is the price agents charge to
buyers, p?B. Here, δ = 3

4 , vB = 3, vS = 5, κB = 1
5 , and κS = 1

6 .

related to the idea from platform economics that it can be optimal to subsidize one side

of the market to encourage adoption by the other side of the market. Rather, buyers are

subsidized as such subsidies are the lowest-cost way to discourage agents from undercutting

on prices; for this result, it is crucial that buyer capacity κB is greater than seller capacity

κS. If buyer capacity were less than seller capacity, then the equilibrium with the highest

sustainable profits would require setting the buyer price to vB and the seller price below vS.

We now move on to constructing the equilibrium that supports the prices given in Theorem 11,

starting with the analysis of the stage game.

3.1 Bertrand Reversion Nash Equilibrium

We first describe the Bertrand reversion Nash equilibrium of the stage game. In this

equilibrium, each agent announces a buyer price paB = 0 and a seller price paS = 0. Buyers and

sellers then sort themselves equally across agents. Finally, each agent invites each other agent

with an agency fee of 0; each agent then accepts every invitation and so the full network

forms.
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Proposition 1. There exists a coordination-proof subgame-perfect Nash equilibrium of the

stage game in which each agent obtains a payoff of 0, the lowest individually rational payoff.

Furthermore, in every symmetric coordination-proof subgame-perfect Nash equilibrium every

agent obtains a payoff of 0.

Working backwards through the stage game, in any subgame-perfect Nash equilibrium

each agent a invites every other agent ã offering a fee of that captures all of the surplus from

any transaction. An agent ã accepts any invitation that promises him a non-negative profit,

i.e., any invitation with a fee no less than −pãB. We call these actions with respect to making

and accepting invitations statically optimal network formation actions.

Given statically optimal network formation, if any agent were to be making positive

profits, some other agent could undercut him and still make positive profits as buyers and

sellers will now choose to work with agent with lower prices;77 thus, competition has the same

effect as in standard models of Bertrand competition between firms and drives profits to 0.

3.2 Maintaining Collusion via Network Exclusion

We first provide an intuitive description of a coordination-proof Nash equilibrium that

maximizes the surplus extracted by the agents. We then formally construct a strategy

profile that delivers prices of (p?B, p?S) each period, and show that this strategy profile is

a coordination-proof subgame-perfect Nash equilibrium. Finally, we show that no other

coordination-proof subgame-perfect Nash equilibrium can sustain prices that deliver higher

per-period profits than those delivered by (p?B, p?S).

The key idea is to construct strategies that incentivize agents not to work with any agent

who undercuts the collusive prices. In our equilibrium, play begins in a cooperation phase, in

which each agent offers a buyer price of p?B and a seller price of p?S. Assuming all the agents

offer p?B and p?S, buyers and sellers allocate themselves evenly across all agents; agents then
7Such intuitive behavior by the buyers and sellers is guaranteed by our assumption of coordination-

proofness.
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form the complete network. However, during the cooperation phase, if some agent undercuts

on pricing, i.e., becomes a price deviator, other agents refuse to form links with him; in light

of this, buyers and sellers are less willing to sign on with a price deviator, as they are aware

that they will not have as many transaction opportunities when working with such an agent.

Thus, if an agent undercuts on price on each side by a small amount, instead of increasing

his market share—as one might expect—he finds that no buyer or seller will work with him.

Thus, if an agent wants to increase his market share, he must significantly reduce his prices

to compensate buyers and sellers for the reduction in transaction opportunities they face for

signing up with him; we call the price he must offer to entice buyers the buyer deviation price

(during the cooperation phase) p◦B and, similarly, the price he must offer to entice sellers the

seller deviation price (during the cooperation phase) p◦S. We say that (pB, pS) is an effective

price deviation if (pB, pS) ≤ (p◦B, p◦S).

Of course, to incentivize agents to exclude a price deviator from the network, those agents

must expect future rewards from doing so. That is, the “reward should fit the temptation”

(Mailath et al.Mailath et al., 20172017)—and so continuation play must proceed differently depending on

whether agents worked with the price deviator, whom we shall refer to as å. If all other agents

exclude the price deviator å from the network, play proceeds to a collusive punishment phase.

In this phase, prices fall but not to 0; each agent offers a buyer price of q?B and a seller price

of q?S. Moreover, agents continue to exclude the price deviator å from the network. During

a collusive punishment phase, as in the cooperation phase, a (possibly new) price deviator

must substantially undercut (q?B, q?S) in order to incentivize buyers and sellers to sign up with

him; we call the price he must offer to entice buyers the buyer deviation price (during the

collusive punishment phase) q◦B and, similarly, the price he must offer to entice sellers the

seller deviation price (during the collusive punishment phase) q◦S. We say that (pB, pS) is an

effective price deviation if (pB, pS) ≤ (q◦B, q◦S). The prices q?B and q?S are exactly chosen so

that any effective price deviation during the collusive punishment phase is unprofitable.

By contrast, if any agent works with a price deviator (in either the cooperation phase or

12



a collusive punishment phase), play proceeds to a Bertrand reversion phase, in which each

agent obtains 0 profits in all future periods. Thus, since working with the price deviator

leads to 0 profits in all future periods, while not working with the price deviator leads to

positive profits in all future periods, sufficiently patient agents will follow through on the

threat to exclude a deviator from the network. Note that the degree of patience necessary to

incentivize agents to not work with a price deviator does not depend on market concentration:

Both future profits from excluding the price deviator and the profits today from working with

the price deviator are proportional to 1
|A|−1 , the pro-rated share of each side of the market

for each agent other than the price deviator.88

We now formally construct a strategy profile that sustains (p?B, p?S).99 To simplify the

exposition, we first define distinguished actions for buyers and sellers:

1. A buyer (seller) lists agents arbitrarily by reporting with equal probability each ranking

that includes every agent.

2. A buyer (seller) prioritizes agent a by reporting with equal probability each ranking

that both includes every agent and ranks a first.

3. A buyer (seller) deprioritizes agent a by reporting with equal probability each ranking

that both includes every agent and ranks a last.

We further define distinguished actions for agents in the network formation steps:

1. The full network forms with standard fees when each agent a invites every other agent

ã with a fee that demands ã’s buyer price, i.e., a fee of −pãB, and every agent ã accepts
8It is unnecessary to revert to Bertrand competition in the event that some agent works with a price

deviator. Instead, we could use any equilibrium continuation play that delivers 0 profits to an agent who
works with a price deviator; in particular, we could use the collusive punishment phase that punishes an
agent who works with a price deviator.

9Here, we require that buyers and sellers treat identically agents who are treated identically by other
agents (with respect to network formation); that is, they do not discriminate between agents who have offered
the same prices in this period and whom they expect to form the same network. This restriction prevents
implausible coordination by buyers and sellers. In Appendix DD, we relax this assumption and show that
Theorem 11 still holds. (There, we make a technical simplifying assumption that κS ≤ κB ≤ 1

3 .)
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every invitation with a fee greater than or equal to −pãB.1010

2. The network excluding a forms with standard fees when the full network forms among

agents other than a and no agent forms any links with a, that is, when:

• Each agent other than a does not invite a.

• Each agent other than a invites every other agent ã with a fee that demands ã’s

buyer price, i.e., a fee of −pãB.

• Agent a invites every other agent with a fee equal to a’s seller price, paS.

• Each agent ã other than a accepts every invitation he receives with a fee greater

than or equal to −pãB except an invitation from a.

• Each agent other than a accepts an invitation from a if and only if the fee is

(strictly) greater than paS.

• Agent a accepts an invitation from any other agent if and only if the fee is no less

than −paB.

We also define the buyer deviation price in the cooperation phase as p◦B = vB− 1
κS

(vB−p?B)

and the seller deviation price p◦S = vS− 1
κB

(vS−p?S) = vS; these are the prices at which buyers

and sellers will be willing to work with a deviating agent in the cooperation phase. During the

collusive punishment phase, prices are q?B = (1− κS)vB − κSvS and q?S = vS. We define the

buyer deviation price during the collusive punishment phase as q◦B = vB − 1
κS

(vB − q?B) and

the seller deviation price as q◦S = vS − 1
κB

(vS − q?S) = vS; these are the prices at which buyers

and sellers will be willing to work with an agent who deviates in the collusive punishment

phase. Finally, we suppress here detailing the strategies after mutual deviations, i.e., after

two or more agents simultaneously deviate: since no agent expects any other agent to deviate,

such cases have no effect on incentives.
10These fees imply that, for a given transaction, the agent representing the seller receives all of the profits

obtained by the agents. In fact, it is straightforward to modify the strategies presented here to split the
profits more evenly, although doing so requires verifying additional incentive constraints.
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Figure 2: Automaton representation of the equilibrium we consider. Labeled nodes are phases;
unlabeled nodes are intermediate phases, which represent the branching of transitions based
on behavior in the later steps of the game.

The strategy profile that sustains p?B and p?S consists of three phases: In the cooperation

phase:

1. Each agent offers a buyer price p?B and a seller price p?S.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each agent has offered (p?B, p?S). Buyers and sellers list

agents arbitrarily.

Case 2: Ineffective price deviation by å: Each agent except å has offered (p?B, p?S)

and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that (p̊aB, p̊aS) � (p◦B, p◦S). Buyers and

sellers deprioritize agent å.

Case 3: Effective price deviation by å: Each agent except å has offered (p?B, p?S)

and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that (p̊aB, p̊aS) ≤ (p◦B, p◦S). Buyers and

sellers prioritize agent å.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:
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Case 1: Collusive pricing. The full network forms with standard fees.

Cases 2 and 3: Price deviation by å. The network excluding a forms with stan-

dard fees.

4. Under collusive pricing, if the full network with standard fees forms, play continues in

the cooperation phase. After a price deviation by å, if the network excluding å forms

with standard fees, then play proceeds to the å-collusive punishment phase. Otherwise,

play proceeds to the Bertrand reversion phase.

In the å-collusive punishment phase:

1. Every agent (including å) offers buyer price q?B and seller price q?S.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each agent a ∈ A has offered (q?B, q?S). Buyer and sellers

deprioritize å.

Case 2: Ineffective price deviation by â ∈ A: Each agent a ∈ Ar{â} has offered

(q?B, q?S), and â has offered (pâB, pâS) 6= (q?B, q?S) such that (pâB, pâS) � (q◦B, q◦S).1111

Buyers and sellers deprioritize ǎ.

Case 3: Effective price deviation by â ∈ A: Each agent a ∈ Ar {â} has offered

(q?B, q?S), and â has offered (pâB, pâS) 6= (q?B, q?S) such that (pâB, pâS) ≤ (q◦B, q◦S). Buyers

and sellers prioritize ǎ.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Cases 1: Collusive pricing. The network excluding å forms with standard fees.

Cases 2 and 3: Effective and ineffective price deviations by â. The network ex-

cluding â forms with standard fees.
11Note that agent â could be either å or some other agent.
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4. Under collusive pricing, if the network excluding å forms with standard fees, play

continues in the å-collusive punishment phase. After a price deviation by â, if the

network excluding â forms with standard fees, then play proceeds to the â-collusive

punishment phase. Otherwise, play proceeds to the Bertrand reversion phase.

Figure 22 provides an automaton representation of the coordination-proof subgame-perfect

Nash equilibrium described here.

It is immediate that the strategy profile just described delivers prices of (p?B, p?S) in

each period; we now verify that it constitutes a coordination-proof subgame-perfect Nash

equilibrium.

Making and Responding to Invitations in the Cooperation Phase

We first verify that the prescribed strategy profile is incentive-compatible with respect to

to making and accepting invitations in the cooperation phase. It is straightforward to show

that an agent cannot profitably deviate with respect to making and accepting invitations

in the collusive pricing and ineffective price deviation cases. It is also straightforward that,

in the effective price deviation case, an agent other than å cannot profitably deviate with

respect to making and accepting invitations from agents other than å and that å’s prescribed

actions are optimal. Details are given in Appendix C.2C.2.

We now analyze a key incentive constraint: that an agent a is better off following his

prescribed actions than if he

1. invited å with a fee of −p̊aB,

2. accepted an invitation from å with a fee of p̊aS, and

3. followed his prescribed actions with respect to other agents.1212

12It is then immediate that a is better off following his prescribed actions than any other strategy by a
with respect to inviting å and/or accepting å’s invitation with a fee of p̊aS (and actions with respect to other
agents).
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The payoff for working with the deviator å is then given by1313

α

1− α(1− κS)︸ ︷︷ ︸
Mass of sellers
represented by a

κB︸︷︷︸
Mass of buyers
represented by å

(p̊aB + p?S)︸ ︷︷ ︸
Profit per
transaction

+ α

1− α(1− κB)︸ ︷︷ ︸
Mass of buyers
represented by a

κS︸︷︷︸
Mass of sellers
represented by å

(p?B + p̊aS)︸ ︷︷ ︸
Profit per
transaction︸ ︷︷ ︸

Payoff from working with å

+

α

1− α(1− κS)︸ ︷︷ ︸
Mass of sellers
represented by a

(1− κB)︸ ︷︷ ︸
Mass of buyers
represented by

agents other than å

(p?B + p?S)︸ ︷︷ ︸
Profit per
transaction︸ ︷︷ ︸

Profits from working with agents
other than å this period

. (1)

Meanwhile, the total payoff for a from following his prescribed actions is

α

1− α(1− κS)(1− κB)(p?B + p?S)︸ ︷︷ ︸
Profits from working with agents

other than å this period

+ δ

1− δ
α

1− α(q?B + q?S)︸ ︷︷ ︸
Payoff in future periods

from adhering

. (2)

Thus, since the profits from working with agents other than å this period are identical

regardless of whether a works with å, it is sufficient that

δ

1− δ
α

1− α(q?B + q?S) ≥ α

1− α(1− κS)κB(p̊aB + p?S) + α

1− α(1− κB)κS(p?B + p̊aS)

or, equivalently, that

δ

1− δ (vB + vS)(1− κS) ≥ (1− κS)κB(p̊aB + p?S) + (1− κB)κS(p?B + p̊aS); (3)

recall that q?B = (1− κS)vB − κSvS and q?S = vS and so q?B + q?S = (vB + vS)(1− κS). Observe

the following:

• Since p̊aB ≤ p◦B ≤ p?B ≤ vB and p?S = vS, we have that p̊aB + p?S ≤ vB + vS.

• Since p̊aS ≤ p◦S = p?S = vS and p?B ≤ vB, we have that p?B + p̊aS ≤ vB + vS.
13Note that α

1−α = 1
|A|−1 .
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• Since κB ≥ κS, we have that 1− κS ≥ 1− κB.

Hence, for (33) to hold, it is sufficient that

δ

1− δ ≥ κB + κS;

this inequality holds so long as δ ≥ 1
2 as κS ≤ κB ≤ 1

2 .

Intuitively, each agent a other than å is unwilling to work with the deviator since the

number of buyers and sellers represented by a this period is roughly proportional to α and

future profits for a are also roughly proportional to α. Thus, for reasonably high discount

factors, future profits for a are worth more than the gains from working with å today.

Making and Responding to Invitations in the Collusive Punishment Phase

The analysis of making and responding to invitations in the å-collusive punishment phase

proceeds very similarly to the analysis of making and responding to invitations in the

cooperation phase. Details are given in Appendix C.2C.2.

Agent Selection in the Cooperation Phase

There are three cases to consider:

Case 1: Collusive Pricing. It is straightforward that no positive masses of buyers and

sellers can alter their actions to simultaneously improve their welfare since every agent

offers a buyer price p?B ≤ vB to buyers, every agent offers a seller price p?S ≤ vS to

sellers, every buyer and seller obtains an agent, and the full network forms (regardless

of buyer and seller actions).

Cases 2 and 3: Effective and ineffective price deviations by å. If å offers prices other

than (p?B, p?S), both buyers and sellers anticipate that å will not have invitations accepted

or accept any invitations. Thus, any buyer who is represented by å will only see sellers
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represented by å and, similarly, any seller who is represented by å will only see buyers

represented by å. Hence, a positive mass of buyers µB and a positive mass of sellers µS

will both be strictly better off when represented by å if and only if both

(vB − p̊aB)︸ ︷︷ ︸
Buyer b’s payoff

from a transaction

µS︸︷︷︸
Probability of a
transaction for b

≥ vB − p?B and (vS − p̊aS)︸ ︷︷ ︸
Seller s’s payoff

from a transaction

µB︸︷︷︸
Probability of a
transaction for s

≥ vS − p?S;

that is, if both

p̊aB ≤ vB −
1
µS

(vB − p?B) and p̊aS ≤ vS −
1
µB

(vS − p?S).

These conditions are easiest to satisfy when µB = κB and µS = κS; thus, buyers and

sellers will work with å so long as both

p̊aB ≤ vB −
1
κS

(vB − p?B) = p◦B and p̊aS ≤ vS −
1
κB

(vS − p?S) = p◦S.

Intuitively, buyers demand a large discount to work with a since a, by lowering his

buyer price, has effectively become a lower quality agent because other agents no longer

work with a.

Agent Selection in the Collusive Punishment Phase

The analysis of agent selection in the å-collusive punishment phase is analogous to that for

agent selection in the cooperation phase. Details are given in Appendix C.2C.2.

Deviating on Prices in the Collusive Punishment Phase

We now check that no agent has an incentive to post prices at or below (q◦B, q◦S) in the

å-collusive punishment phase. If an agent does post prices at or below (q◦B, q◦S), he obtains

his full capacity of buyers and sellers but does not work with any other agents. Thus, his
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profits are given by

κBκS(q◦B + q◦S) = κBκS

((
vB −

1
κS

(vB − q?B)
)

+ vS

)
= κBκS

(
vB −

1
κS

(vB − (1− κS)(vB − κSvS)) + vS

)
= κBκS

(
vB −

1
κS

(κSvB + κSvS) + vS

)
= 0.

Since no agent (including å) receives less than 0 in the collusive punishment phase, no agent

will deviate.

Deviating on Prices in the Cooperation Phase

Finally, we verify that, during the cooperation phase, no agent has an incentive to deviate on

prices. Along the equilibrium path, an agent’s profits are given by 1
1−δα(p?B + p?S). Following

the maximal effective price deviation (p◦B, p◦S), an agent’s profits are given by (p◦B + p◦S)κBκS.

Thus, prescribed play is optimal if

α

1− δ (p?B + p?S) ≥ (p◦B + p◦S)κBκS;

that is, so long as

α

1− δ (p?B + p?S) ≥
((
vB −

1
κS

(vB − p?B)
)

+
(
vS −

1
κB

(vS − p?S)
))
κBκS. (4)

Hence, the highest sustainable profits are found by solving

max
p?B ,p

?
S

{p?B + p?S}
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subject to (44) and the individual rationality constraints for the buyers and sellers (p?B ≤ vB

and p?S ≤ vS). Solving this linear program yields

p?B = (1− δ)κB(vB − κS(vB + vS)) + αvS
(1− δ)κB − α

p?S = vS.

Maximality of Surplus Extraction

Finally, we need to show that no surplus extraction greater than p?B + p?S = p?B + vS can be

maintained. If p?B is exactly vB, then the individual rationality of buyers and sellers ensures

that no greater surplus extraction is possible. If p?B is less than vB, then any prices (p′B, p′S)

that generate more surplus extraction than (p?B, p?S) must distribute that surplus so that at

least one agent a receives no more than α(p′B + p′S). But a could then increase his total

profits by choosing sufficiently low prices to attract buyers and sellers who understand that

they will only have access to sellers and buyers respectively who are also represented by a.

3.3 Discussion

Our results show prices appreciably above marginal cost can be sustained regardless of the

number of agents. To compare our results with the standard analysis of Bertrand competition

games, we consider here whether simpler “grim trigger” strategies will also allow agents to

extract full surplus. The grim trigger strategy profile that obtains full surplus extraction

involves every agent offering a buyer price of vB and a seller price of vS, statically optimal

network formation (regardless of offered prices), and any deviation leading to Bertrand

competition in future periods. If agents are playing a grim trigger strategy profile, then an

optimal deviation involves an ε price cut to buyers and sellers and statically optimal network

formation actions; this generates a profit of (vB + vS)κS for the deviating agent. Adhering

to a grim trigger strategy generates a profit of α
1−δ (vB + vS). Thus, grim trigger strategies

will only be effective if the market concentration α is higher than (1− δ)κS; hence, market
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concentration must be quite high to maintain collusion using grim trigger strategies. Moreover,

such strategies can not facilitate any collusion when market concentration is below (1− δ)κS.

By contrast, the strategy profile described in Section 3.23.2 allows full surplus extraction by

the agents so long as α is greater than (1− δ)κBκS < (1− δ)κS, and continues to facilitate

significant surplus extraction even as the number of agents grows large, and we might naïvely

expect the market to become “perfectly competitive.”

There are two characteristics of the model that facilitate highly collusive behavior even

when the number of players is large. First, both buyers and sellers obtain independent

representation but expect their representative to work with the representatives of others;

this structure allows for in-period punishments of the type we describe. Adding a restriction

that buyers and sellers can only meet when they use the same agent switches the model to a

traditional platform model with limited capacity; under this alternative structure, collusion

can no longer be maintained at low discount factors. Such a change, however, reduces total

welfare and can even lower consumer surplus since preventing network formation leads to

an inefficient lack of transactions in the market; each buyer has a most a κS probability of

buying a house, and each seller has at most a κB probability of selling a house. If κS and κB

are small, few transactions will be completed, reducing the gains from competitive pricing.

The effect of κS and κB on the highest sustainable price highlights the second feature

of the market that allows for high prices in an unconcentrated industry: Matching buyers

and sellers is challenging since there is only one potential buyer for each house and only one

acceptable house for each buyer. While extreme, these assumptions capture the importance

of match quality in the housing market. If, by contrast, each house were acceptable to a large

number of buyers and each buyer found many houses acceptable, collusion would be much

more difficult to sustain; in this case, an entrant offering service to both sides of the market

need only offer slightly lower prices to attract both buyers and sellers, as a buyer (or seller)

would still have a high probability of finding an acceptable match even if the entrant were

excluded from the network. Thus, when buyers and sellers have a large number of possible
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transaction partners, the price for facilitating a transaction must be close to marginal cost.

Examples of intermediated markets where we do not seem to see collusion include

ridesharing firms and travel agents selling airline tickets. However, in both of these markets,

intermediaries have sufficient capacity to serve all of one side of the market: Ridesharing

firms have effectively infinite capacity on both sides of the market, while a typical travel

agent effectively represents all airlines. In fact, in both the ridesharing and travel agency

markets, sellers “multi-home” and typically work with each platform intermediary; thus,

there is no need for platform intermediaries to form a network, and so our analysis does not

apply. Even if ridesharing firms exhibited limited capacity on both sides of the market, the

fact that match quality does not matter very much would imply that the ability to punish

other firms via network exclusion would be very weak; so even in this case, we would not

expect firms to be able to sustain high prices.

4 Policy Responses

4.1 Rebate Bans

Rebate bans, a feature of real estate regulation in several U.S. states, prohibit buyers’ agents

from offering “rebates,” i.e., paying a buyer for the right to represent him in a real estate

transaction. Han and HongHan and Hong (20112011) argued that rebate bans are anticompetitive and estimated

a model in which rebate bans generate excessive entry into real estate brokerage.

We show that rebate bans can play an important role in enhancing the profitability of

collusive behavior by agents. We model a rebate ban as a constraint that each agent must

offer a weakly positive buyer price, i.e., that paB,t ≥ 0 for all agents a ∈ A and all times t.

Rebate bans can facilitate collusion even when no agent is offering a 0 price to buyers, as

rebate bans constrain off-equilibrium path pricing; for a given collusive pricing scheme, a

deviator may need to charge a negative price to attract buyers, as this is the only way to

sufficiently compensate buyers for their reduced access to sellers. Thus, when negative buyer
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Figure 3: The prices supporting the highest sustainable profit equilibrium when a rebate ban
is present. The dark red line is the seller price, p?S, and the light green line is the buyer price,
p?B. The light green dashed line is the buyer price when no rebate ban is present; the seller
price is invariant to the presence of a rebate ban. Here, δ = 3

4 , vB = 3, vS = 5, κB = 1
5 , and

κS = 1
6 .

prices are prohibited, it is harder for the deviator to recruit buyers and so higher prices for

buyers (and higher profits) can be sustained.

Theorem 2. For δ ≥ 1
2 , the highest sustainable industry profits in a coordination-proof

subgame-perfect Nash equilibrium with a rebate ban are achieved with prices

p?B =



vB α̂ ≥ κS

(vB−κS(vB+vS))+α̂vS
1−α̂ α̂ ∈

[
κS

vS
vS+(1−κS)vB , κS

]
vB(1− κS) α̂ ≤ κS

vS
vS+(1−κS)vB

p?S = vS,

where α̂ = α
(1−δ)κB .

Moreover, limα→0(p?B + p?S) = vB(1− κS) + vS, which is strictly higher than the highest

sustainable industry profits without a rebate ban.

Figure 33 plots the prices offered to buyers and sellers in the highest sustainable profit
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equilibrium as a function of the market concentration when a rebate ban is present. Intuitively,

rebate bans only have an effect when the optimal deviating buyer price p◦B is negative; this

happens when market concentration is sufficiently low, i.e., α̂ ≤ κS
vS

vS+(1−κS)vB . Thus, when

market concentration is greater than κS vS
vS+(1−κS)vB , the rebate ban has no effect. By contrast,

when market concentration is less than κS vS
vS+(1−κS)vB , the collusive buyer price p?B is set so

that buyers would find working with an agent with a buyer price of 0 (and only getting access

to that agent’s sellers) to be weakly dispreferred to working with an agent with a buyer price

of p?B (and getting access to all sellers).

4.2 Agent Specialization and Agency Fees

In our baseline model, all agents are ex ante identical, and we show that a symmetric

equilibrium delivers the highest sustainable surplus extraction. Within the real estate

industry, however, there is at least some distinction between agents who primarily serve

buyers and agents who primarily serve sellers. In particular, while any agent can and likely

does represent buyers at times, there are agents, and even firms of agents, who exclusively

represent buyers.1414

In the U.S. the price paid by a buyer to his agent is typically zero, despite some costs for

the agent of representing a buyer; indeed, this is consistent with our model, which suggests

that optimal collusion might require agents to subsidize buyers. Thus, it follows that agent

specialization may affect the structure of optimal collusion. Allowing for different types of

agents may be important, as our model predicts that optimal collusion may require that

agents subsidize buyers rather than charge buyers for access to the platform.

To capture the potential for different roles among agents, we generalize our model to

allow for two types of agents. Seller-proficient agents have a low cost for acting as a seller’s

agent and a potentially high cost for acting as a buyer’s agent. Buyer-exclusive agents have a

low cost for acting as a buyer’s agent and a prohibitively high cost for acting as a seller’s
14See, for example, the National Association of Exclusive Buyer Agents (http://naeba.org/http://naeba.org/).
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agent. The asymmetry in our setup (seller proficiency versus buyer exclusivity) is in line with

the industry structure: while there are few real estate brokers or agents who represent only

sellers, there do exist buyer-exclusive agencies, and even a trade association for them, the

National Association of Exclusive Buyer Agents. As we show, agent heterogeneity can play

an important role in the structure of optimal collusion. In particular, buyer-exclusive agents

cannot be induced to set negative buyer prices unless they are compensated through agency

fees. Thus, our extension of the model allows us to investigate the effects eliminating agency

fees, a reform originally suggested by BarwickBarwick (20182018).

4.2.1 Model with Buyer-Exclusive and Seller-Proficient Agents

We modify our model by partitioning the set of agents A into a set of buyer-exclusive agents

AB and a set of seller-proficient agents AS; we let β ≡ 1
|AB |

and σ ≡ 1
|AS |

. We also introduce

the cost parameter c as the cost a seller-proficient agent incurs when he represents a buyer

in a transaction; to state our results more simply, we assume that c ≤ vB. The cost for

buyer-exclusive agents to represent a seller is assumed to be high enough to make such

an action clearly undesirable; for simplicity we assume that buyer-exclusive agents cannot

represent sellers and so only offer a buyer price. Seller-proficient agents are allowed, but not

required, to offer a buyer price. Consistent with the symmetric model, we normalize the cost

of buyer-exclusive agents representing buyers and seller-proficient agents representing sellers

to 0. Thus, the stage game payoff to a buyer-exclusive agent a is

|Bt(a)|
∑

ã∈Aa⇒

(
|St(ã)|(paB,t + fa←ãt )

)
,

while the payoff to a seller-proficient agent is

|Bt(a)|
∑

ã∈Aa⇒

(
|St(ã)|(paB,t + fa←ãt − c)

)
+ |St(a)|

∑
ã∈A⇒a

(
|Bt(ã)|(paS,t − f ã←at )

)
.
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Figure 4: The prices supporting the highest sustainable profit equilibrium when seller-
proficient agents work with buyers. The dark red line is the seller price, p?S, and the blue line
is the buyer price, p?B. The light green line is the buyer price when agency fees are allowed;
the seller price is identical in both cases. Here, δ = 3

4 , vB = 1, vS = 10, κB = 1
4 , κS = 1

5 , and
c = 1.

4.2.2 Optimal Collusion

We now characterize the highest profits that can be collectively achieved by the industry.

Theorem 3. For δ ≥ 1
2 , the highest sustainable industry profits (and the highest sustainable

profits for seller-proficient agents) are achieved with prices

p?B =


vB σ̂ ≥ κS(1− c

vB+vS )

vB−κS(vB+vS−c)+σ̂vS
1−σ̂ σ̂ ≤ κS(1− c

vB+vS )

p?S = vS

where σ̂ = σ
(1−δ)κB .

Moreover, limσ→0(p?B + p?S) = (vB + vS)(1− κS) + κSc, which is strictly higher than the

highest sustainable industry profits without agent specialization.

It is immediate from the statement of the theorem that prices are higher under specializa-

tion. Prices are higher because a two-sided deviation is less profitable for seller-proficient
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agents (and impossible for buyer-exclusive agents); meanwhile, no agent incurs the additional

cost c along the equilibrium path, as each agent only works with one side of the market. In

fact, if working with buyers is sufficiently costly for seller-proficient agents (i.e., c ≥ vB + vS),

then monopoly prices can be sustained. Equilibrium prices are exhibited in Figure 44; note

that when market concentration is low enough, buyers are charged negative prices.

The overall structure of the equilibrium strategy profile that supports these prices is

similar to the strategy profile that supports the prices given in Theorem 11. The key

difference in equilibrium behavior is that only buyer-exclusive agents represent buyers and

only seller-proficient agents represent sellers. Additionally, we must now separately verify

that buyer-exclusive and seller-proficient agents will not work with a seller-proficient agent

following his price deviation. In fact, to provide the most effective dynamic incentives, we

need two different collusive punishment phases: The first collusive punishment phase follows

a price deviation in which the price deviator attracts both buyers and sellers; this phase uses

prices (q?B, q?S) and an agency fee g?. The second collusive punishment phase follows a price

deviation in which the deviator attracts only sellers; this phase uses the same prices (q?B, q?S)

but a new agency fee h?. In both cases, the prices (q?B, q?S) are given by

q?S = vS

q?B = vB − κS(vB + vS) + κSc.

Note that we do not need to worry about price deviations by either a buyer-exclusive or a

seller-proficient agent å on the buy-side; for such a deviation, each seller-proficient agent

a (still) invites å with a fee that obtains all of the surplus from a transaction between å’s

buyers and a’s sellers.

The full proof is relegated to the appendix, but here we describe the main differences in

the analysis:

First, we show that, given collusive punishment phases with prices (q?B, q?S), following a
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price deviation by some seller-proficient agent å in the cooperation phase, no agent will work

with å within-period. There are two relevant price deviations to consider: in the first, å

attracts both buyers and sellers, while in the second, å just attracts sellers.1515

When å attracts both buyers and sellers, we enter the Bertrand reversion phase if any

agent accepts an invitation from å; if no invitation is accepted we enter a collusive punishment

phase with prices (q?B, q?S) = (vB−κS(vB+vS)+κSc, vS) and an agency fee g?. Note that å will

never make an invitation with a fee greater than p̊aS ≤ p?S; thus, to incentivize buyer-exclusive

agents to reject invitations from å it is sufficient that

δ

1− δβ(q?B + g?)︸ ︷︷ ︸
Continuation payoff for a buyer-
proficient agent for excluding å

≥ β(1− κB)κS(p?B + p?S)︸ ︷︷ ︸
Gain to a buyer-exclusive agent

for working with å

.

Moreover, å will never accept an invitation with a fee less than c − p̊aB ≥ c − p?B; thus, to

incentivize seller-proficient agents to not make invitations to å it is sufficient that

δ

1− δ
σ

1− σ (q?S − g?)︸ ︷︷ ︸
Continuation payoff for a seller-
proficient agent for excluding å

≥ κB
σ

1− σ (1− κS)(p?S + p?B − c)︸ ︷︷ ︸
Gain to a seller-proficient agent

from working with å

.

To show the existence of a g? that simultaneously satisfies both inequalities, it is sufficient

that

δ

1− δ (q?B + q?S) ≥ (1− κB)κS(p?B + p?S) + κB(1− κS)(p?S + p?B − c).

Thus, as q?B + q?S ≥ (vB + vS)(1 − κS), p?B + p?S ≤ vB + vS, κS ≤ κB ≤ 1
2 , and c ≥ 0, it is

15Note that it is easy to rule out the possibility that å would attract only buyers by offering a price
p̊aB ≤ p?B, by requiring other agents to invite å with a fee of c − p̊aB, å to accept any such invitation, and
proceeding to Bertrand reversion in future periods. Thus, such a deviation by å would obtain 0 profits this
period; moreover, å would obtain 0 profits in future periods.
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sufficient that

δ

1− δ (vB + vS)(1− κS) ≥ (1− κB)κS(vB + vS) + κB(1− κS)(vB + vS),

which holds if

δ

1− δ ≥ κS + κB,

and so it is enough that δ ≥ 1
2 . Note that any g? which satisfies both inequalities will be in

[−q?B, q?S].

When å attracts only sellers, we enter the Bertrand reversion phase if any buyer-exclusive

agent accepts an invitation from å; if no invitation is accepted we enter a collusive punishment

phase with prices (q?B, q?S) = (vB−κS(vB+vS)+κSc, vS) and an agency fee h?. Note that å will

never make an invitation with a fee greater than p̊aS ≤ p?S; thus, to incentivize buyer-exclusive

agents to reject invitations from å it is sufficient that

δ

1− δβ(q?B + h?)︸ ︷︷ ︸
Continuation payoff for a buyer-
proficient agent for excluding å

≥ βκS(p?B + p?S)︸ ︷︷ ︸
Gain to a buyer-exclusive agent

from working with å

.

Letting h? = q?S, and recalling that q?B + q?S ≥ (vB + vS)(1 − κS), p?B + p?S ≤ vB + vS, and

κS ≤ 1
2 , it is sufficient that

δ

1− δβ(vB + vS)(1− κS) ≥ βκS(vB + vS).

which holds if

δ

1− δ ≥
κS

1− κS

and so it is enough that δ ≥ 1
2 . Note that, while seller-proficient agents will receive zero
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surplus in the ensuing collusive punishment phase, the prices q?B and q?S were chosen so that

any price deviation—even one that attracts both buyers and sellers—will be unprofitable.

Second, the same pair of collusive punishment phases will deter other agents from working

with an agent who deviates on price in the collusive punishment phase. This result follows

analogously to the preceding analysis showing our collusive punishment phases will deter

agents from working with an agent who deviates on price in the cooperation phase.

Third, we need to determine the highest prices (p◦B, p◦S) a price deviator can offer in the

cooperation phase that will successfully attract buyers and sellers. As in the analysis of

our baseline model, we calculate that the highest prices a price deviator can offer—and still

attract buyers and sellers—as a function of (p?B, p?S) are given by

p◦B = vB −
1
κS

(vB − p?B) and p◦S = vS −
1
κB

(vS − p?S).

Fourth, and similarly, the best prices a price deviator can offer—and still attract buyers

and sellers—in the collusive punishment phase as a function of (q?B, q?S) are given by

q◦B = vB −
1
κS

(vB − q?B) and q◦S = vS −
1
κB

(vS − q?S).

Fifth, we show that we can sustain the agency fees g? and h? corresponding to the two

different collusive punishment phases. To do this, we require that a buyer-exclusive agent

reject any agency fee less than g?; if any agency fee less than g? is rejected, then it will be

incentive-compatible for seller-proficient agents to offer agency fees of g?. If a buyer-exclusive

agent rejects an agency fee less than g?, future play continues in the same collusive punishment

phase, and so his profits will be
δ

1− δβ(q?B + g?);

while his profits from working with a seller-proficient agent offering a fee less than g? are at

32



most

β
σ

1− σ (q?B + g?).

Thus, since σ ≤ 1
2 (i.e., there are at least two seller-proficient agents), it is sufficient that

δ ≥ 1
2 and g? ≥ −q?B. We also require that a seller-proficient agent (other than å) will offer

agency fees of g?; this is incentive-compatible so long as g? ≤ q?S.

We now show we can sustain h? = q?S = vS in a collusive punishment phase with prices

(q?B, q?S). To do this, we require that a buyer-exclusive agent reject any agency fee less

than q?S; if any agency fee less than q?S is rejected, then it will be incentive-compatible for

seller-proficient agents to offer agency fees of q?S. If a buyer-exclusive agent rejects an agency

fee less than q?S, future play continues in the same collusive punishment phase, and so his

profits will be
δ

1− δβ(q?B + h?);

while his profits from working with a seller-proficient agent offering a fee less than q?S are at

most

β
σ

1− σ (q?B + h?).

Thus, since σ ≤ 1
2 (i.e., there are at least two seller-proficient agents), it is sufficient that

δ ≥ 1
2 .

Sixth, we show that the collusive punishment prices of (q?B, q?S) can be sustained. Here, it

is necessary to check that no seller-proficient agent will wish to offer prices sufficiently low to

attract buyers and sellers; in particular, we need to ensure the punished seller-proficient agent,

who receives 0 in the collusive punishment phase, will not wish to offer prices sufficiently low
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to attract buyers and sellers. Thus, we need that

κBκS(q◦B + q◦S − c) = κBκS

((
vB −

1
κS

(vB − q?B)
)

+
(
vS −

1
κB

(vS − q?S)
)
− c

)
= κBκS

((
vB −

1
κS

(vB − (vB − κS(vB + vS) + κSc))
)

+ vS − c
)

= κBκS

(
(vB −

1
κS

(κSvB + κSvS − κSc) + vS − c
)

= 0.

That is, we have chosen (q?B, q?S) to provide the highest profits possible while ensuring that

the punished agent can not obtain positive profits.

Seventh, and finally, we derive the most profitable pair of prices such that no seller-

proficient agent has an incentive to offer prices of (p◦B, p◦S) (thus attracting buyers and sellers)

and work alone. Thus, the highest sustainable profits are given by

max
p?B ,p

?
S

{p?B + p?S}

subject to

1
1− δσ(p?B + p?S) ≥ κBκS(p◦B + p◦B − c)

p?B ≤ vB

p?S ≤ vS;

since κS ≤ κB, the solution to this program are the prices given in Theorem 33.

4.2.3 Eliminating Agency Fees

Whereas agent specialization increases the scope for collusion, eliminating agency fees may

reduce the scope for collusion. In response to eliminating agency fees, there are two candidate

equilibria to maximize industry profits. In the first, seller-proficient agents represent both
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buyers and sellers. In the second, buyer-exclusive agents represent buyers while seller-proficient

agents represent sellers. The advantage of having seller-proficient agents represent buyers is

that, in equilibrium, buyers can still be charged negative prices as seller-proficient agents’

profits from representing sellers will more than recover the costs of representing buyers.

Note that buyer-exclusive agents can not profitably undercut, as it is easy to incentivize

seller-proficient agents to ostracize them.

Theorem 4. For δ ≥ 1
2 , the highest sustainable industry profits (and the highest sustainable

profits for seller-proficient agents) when buyers only work with seller-proficient agents are

achieved with prices

p?B =


vB σ̂ ≥ κS

vB−κS(vB+vS−c)+σ̂(vS−c)
1−σ̂ σ̂ ≤ κS

p?S = vS

where σ̂ = σ
(1−δ)κB .

Moreover, industry revenue is weakly less than the highest sustainable profits when agency

fees are allowed. However, limσ→0(p?B + p?S) = (vB + vS)(1− κS) + κSc, which is the same

revenue in the limit as under the equilibrium which supports the highest sustainable profits

when agency fees are allowed.

The equilibrium supporting the prices stated in Theorem 44 is similar to the equilibrium

supporting the prices when agent specialization is not present, i.e., the equilibrium described

after Theorem 11. However, in the equilibrium described by Theorem 44, there is an additional

incentive constraint: We may need to incentivize seller-proficient agents to represent buyers

each period through dynamic considerations, because when p?B is less than c (i.e., the price

charged to buyers does not compensate the agent for the cost of representing that buyer), a

seller-proficient agent would be better off not representing buyers. The additional constraint

does not bind so long as δ ≥ 1
2 .
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Figure 5: The prices supporting the highest sustainable profit equilibrium when seller-
proficient agents work with buyers. The dark red line is the seller price, p?S, and the blue line
is the buyer price, p?B. The dashed green line is the buyer price when agency fees are allowed;
the seller price is identical in both cases. Here, δ = 3

4 , vB = 1, vS = 10, κB = 1
4 , κS = 1

5 , and
c = 1.

As demonstrated in Figure 55, the equilibrium price is lower under the equilibrium

of Theorem 44 than under Theorem 33 (in which buyer-exclusive agents represent buyers

and are compensated through agency fees). The equilibrium price for buyers is lower

as individual equilibrium profits are lower (since seller-proficient agents now inefficiently

represent buyers). But individual equilibrium profits go to 0 as the market becomes highly

unconcentrated regardless of whether agency fees are allowed; thus, as the market becomes

highly unconcentrated, the highest sustainable buyer price when agency fees are allowed (given

in Theorem 33) and the highest sustainable buyer price when buyers work with seller-proficient

agents (given in Theorem 44) converge.

Theorem 5. For δ ≥ 1
2 , the highest sustainable industry profits (and the highest sustainable

profits for seller-proficient agents) when buyers work with buyer-exclusive agents are achieved
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Figure 6: The prices supporting the highest sustainable profit equilibrium when seller-
proficient agents work with buyers. The orange line is the seller price, p?S, and the blue line
is the buyer price, p?B. The dashed green line is the buyer price when agency fees are allowed;
the dashed red line is the seller price when agency fees are allowed. Here, δ = 3

4 , vB = 1,
vS = 10, κB = 1

4 , κS = 1
5 , and c = 1.

with prices

p?B =



vB σ̂ ≥ κS(1− c
vB+vS )

vB−κS(vB+vS−c)+σ̂vS
1−σ̂ σ̂ ∈ [κS(1− c

vS
− vB

vS

1−κS
κS

), κS(1− c
vB+vS )]

0 σ̂ ≤ κS(1− c
vS
− vB

vS

1−κS
κS

)

p?S =


vS σ̂ ≥ κS(1− c

vS
− vB

vS

1−κS
κS

)
vB(1−κS)+ κS

κB
vS(1−κB)+κSc

κS
κB
−σ̂ σ̂ ≤ κS(1− c

vS
− vB

vS

1−κS
κS

)

where σ̂ = σ
(1−δ)κB .

1616

Moreover, industry revenue is weakly less than in the highest sustainable profit equilibrium

with agency fees.

The interesting case of Theorem 55 is when buyer valuations are sufficiently low; in that

case, buyers are a charged a 0 price and sellers are charged a price less than vS. Figure 66
16Note that we can only have σ̂ ≤ κS(1− c

vS
− vB

vS

1−κS

κS
) if the buyers’ valuations are sufficiently low, i.e.,

vB ≥ κS

1−κS
(vS − c).
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exhibits this effect: Without agency fees, buyers are charged a 0 price as it is the lowest price

for which buyer-exclusive agents will represent buyers. This hard floor for buyer prices limits

the set of sustainable seller prices: for any seller price higher than p?S, a seller-proficient agent

could choose prices sufficiently low to attract buyers and sellers while still increasing profits.

Thus, eliminating agency fees may appreciably decrease the scope for collusion, as suggested

by BarwickBarwick (20182018).1717

Corollary 1. If the value to buyers relative to sellers is sufficiently low, i.e., vB 1−κS
κS

+c < vS,

then limσ→0(p?B + p?S) = vB
(
κB
κS
− 1

)
+ vS(1− κB) + κBc, which is less than the prices under

the highest sustainable profit equilibrium with agency fees.

5 Conclusion

Our analysis explains how an extremely unconcentrated industry such as real estate brokerage

can still support collusive pricing. The brokerage feature is key: our analysis relies on the

fact that, after prices have been announced, brokers must work with each other to complete

transactions. Brokers can punish a price-deviator within-period by refusing to work with

him; this both directly harms the price-deviator and makes the price-deviator’s services less

appealing to buyers and sellers. As a result, even though the market has low barriers to entry

(and thus many brokers), brokers are able to extract a large fraction of total surplus.

Our results suggest that there is substantial potential for intermediaries in residen-

tial real estate to extract rents; this rent extraction comes in the form of a high price

for brokering transactions. Given that residential real estate is a key component of the

U.S. economy, with approximately one and a half trillion dollars in transactions per year

(National Association of RealtorsNational Association of Realtors, 20182018), if housing demand is at least somewhat elastic, the

allocative distortions resulting from broker rents could be quite economically significant.
17Note that whether the equilibrium of Theorem 44 or the equilibrium of Theorem 55 is more profitable

depends on the cost for seller-proficient agents of representing buyers. It is straightforward to construct
examples where c is sufficiently large that all agents prefer the equilibrium of Theorem 55 when agency fees
are eliminated.
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By formally modeling brokered intermediation, we can also clarify the roles of proposed

and existing policies. Our model indicates that eliminating rebate bans, while not a panacea,

reduces the scope for collusion. Similarly, eliminating agency fees can also weaken the ability

of industry participants to maintain high prices.

Finally, our work highlights the importance of using repeated extensive form games to

model competition in settings with multi-stage interactions among market participants.1818

The strategies analyzed here do not fit the traditional normal form repeated game analysis

paradigm, which may partially explain why many economists consider the high commissions

of real estate agents puzzling (Hsieh and MorettiHsieh and Moretti, 20032003). Moreover, multi-stage interac-

tions are quite common in intermediated markets, including IPOs and syndicated lending

(Hatfield et al.Hatfield et al., 20182018; Cai et al.Cai et al., 20182018). These techniques may also prove useful in analyzing

business-to-business transactions and market entry.

18Repeated extensive form games have also been used to analyze vertical mergers (Nocke and WhiteNocke and White, 20072007)
and markets with syndicated production (Hatfield et al.Hatfield et al., 20182018).
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A Candid Remarks by Real Estate Agents

All remarks by real estate agents provided here are as documented by the Department of JusticeDepartment of Justice

(20052005) in their complaint in U.S.A. v. Kentucky Real Estate Commission. Many real estate

agents argued that the Kentucky rebate ban should not be eliminated, expressly because it

forestalled lower prices:

• “If we give rebates and inducements, it would get out of control and all clients would

be wanting something. The present law keeps it under control.”

• “I am for the law as it stands now. If inducements were allowed, they could lead

to competitive behavior, which would make us look unprofessional in the eyes of the

public.”

• “I think this would just take money right out of our pocket.”

Moreover, many agents recognized the explicitly anti-competitive nature of the ban:

• “Rebates and inducements will increase competition and give consumers more choices

in service.”

• “Current law inhibits free trade.”

• “Commissions and sales awards are common in other industries. The bigger wrong

being committed by agents and brokers is the informal unspoken price fixing that

occurs.”

B Random Rationing

Here, we define an algorithm for allocating buyers to agents given a preference list for each

buyer. The procedure for sellers is analogous.

43



We define the assignment of buyers to agents recursively as

a(b) = max
�b

(
{a ∈ A : a−1([0, b)) ≤ κB} ∪ {∅}

)
.

where a �b â if a is ranked higher than â in b’s preference list (and the outside option ∅ is

listed immediately after all acceptable agents).

C Proofs

C.1 Proof of Proposition 11

Existence of a Zero-Profit Equilibrium of the Stage Game

We define the Bertrand competition strategy profile under which every agent obtains a payoff

of 0:

1. Each agent a offers a buyer price paB = 0 and a seller price paS = 0.

2. If every agent offers non-negative buyer and seller prices, then:

• Each buyer reports a ranking over all agents a who offer a buyer price paB ∈ [0, vB],

where agents offering lower buyer prices are listed before agents offering higher

buyer prices; each such ranking is reported with equal probability by each buyer.

• Each seller reports a ranking over all agents a who offer a seller price paS ∈ [0, vS],

where agents offering lower seller prices are listed before agents offering higher

seller prices; each such ranking is reported with equal probability by each seller.

Otherwise, if some agent offers a negative buyer or seller price, buyers and sellers play

coordination-proof Nash equilibrium strategies of the subgame in Step 2 (given the

network formation in Steps 3 and 4 of this period).1919

19Note that here and in the sequel, players have correct conjectures about network formation via backward
induction.
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3. Regardless of the price offers, each agent a invites every other agent ã, offering a transfer

of f ã←a = −max{pãB,−paS}; that is, a demands either all of the surplus that ã will

receive from a buyer (i.e., −pãB) or surplus sufficient to ensure that a’s profits from a

transaction are non-negative.

4. Regardless of the price offers, each agent ã accepts the invitation from a so long as

f ã←a ≥ −pãB.

Agents’ actions with respect to accepting or rejecting invitations are clearly optimal, as

an agent accepts an invitation if and only if any transaction facilitated by that invitation

provides that agent with non-negative surplus. It is then immediate that agents’ actions with

respect to making invitations are optimal, as each invitation made by a to ã is either the

lowest fee offer that will be accepted by ã or is an offer that will be rejected by ã (and no fee

that obtains a positive payoff for a will be accepted).

It is also clear that buyer and seller actions are optimal and coordination-proof; when

no agent offers a negative price, it is immediate that the complete network forms. Thus,

buyers and sellers prefer lower prices, as every agent offers access to the entire other side of

the market. If any agent offers a negative buyer or seller price, then we simply require that

buyers and sellers play coordination-proof Nash equilibrium strategies.

Finally, agents’ price offers are optimal; given that every other agent offers a buyer price

of 0 and a seller price of 0, if a offers a positive buyer price, a will not represent any buyers

and, if a offers a positive seller price, a will not represent any sellers.2020 Thus, a can not

increase his profits by increasing his buyer or seller price. It is immediate that a can not

increase his profits by decreasing his buyer or seller price.2121

20Recall that we have assumed that there is sufficient capacity to serve all of the buyers and sellers even if
one agent leaves the economy, i.e., (|A| − 1)κB ≥ 1 and (|A| − 1)κS ≥ 1.

21We show in Appendix C.1C.1 that all symmetric coordination-proof Nash equilibria have 0 profits.

45



Proof that Profits Must Be 0 in the Stage Game

We now show that there does not exist any positive-profit symmetric subgame-perfect

equilibrium of the stage game.

Consider a positive profit symmetric subgame-perfect equilibrium of the stage game; we

will show that any such equilibrium is not coordination-proof. In any such equilibrium, each

agent a ∈ A is offering the same price pB to buyers and the same price pS to sellers; moreover

pB + pS > 0.

Lemma 1. Consider the network formation subgame. If paB + pāS > 0, B(a) > 0, and

S(ā) > 0, then a ∈ A⇒ā. Moreover, fa←ā = −paB.

Proof. Agent a will accept any fee fa←ā > −paB as this increases the payoff for a (since

B(a) > 0 and S(ā) > 0). Thus, if ā offers a fee such that a rejects ā’s invitation, ā can offer

−paB + ε which a will accept if ε > 0. But, for ε small enough, offering such a fee and having

it accepted strictly increases ā’s profits.

If fa←ā > −paB, then ā could increase his profits by choosing to offer a a fee of fa←ā − ε

(where ε > 0) if this invitation was accepted; agent a would still accept this fee so long as ε is

sufficiently small.

Lemma 11 implies that every agent with a positive mass of buyers accepts the fee of every

other agent with a positive mass of sellers since pB + pS > 0.

There exists at least one agent a such that S(a) ≡ µaS < κS. Suppose that a deviates

to offer a seller price of pS − ε (where ε > 0). After such a deviation, if S(a) > 0 and ε is

sufficiently small, Lemma 11 implies that every agent with a positive mass of buyers accepts

an invitation with a fee of −pB from a. It is then immediate that a mass of sellers of size

κS is strictly better off by listing a first, since those sellers receive a better price and still

have access to all the buyers. Thus, the profits of agent a have increased as (for ε sufficiently

small)

µaS(pB + pS) < κS(pB + pS − ε).
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C.2 Details of the Proof of Theorem 11

Making and Responding to Invitations in the Cooperation Phase

There are four cases to consider:

Case 1: Collusive Pricing. For an agent a, if either

• a offered a fee other than −p?B (or did not invite some agent), or

• some agent offered a a fee other than −p?B,

then play will proceed to the Bertrand reversion phase (regardless of a’s actions at this

point); thus, it is immediate that a will accept an invitation if and only if the fee is

at least −p?B (as this maximizes in-period profits). Otherwise, it is optimal for a to

accept each offered fee of −p?B as this has no effect on in-period profits and, by doing

so, ensures that play continues in the cooperation phase.

It is also immediate that it is optimal to invite every other agent with a fee of −p?B as this

maximizes in-period profits as well as ensuring that play continues in the cooperation

phase.

Case 2: Ineffective price deviation by å. Showing that all agents other than å follow

prescribed play with respect to making invitations to and accepting invitations from

agents other than å is exactly as in the collusive pricing case. It is also immediate that

a should follow the prescribed strategy with respect to any invitation from å, as å has

no sellers (so this period’s profits are unaffected). Furthermore, a should follow the

prescribed strategy of not making an invitation to å, as å has no buyers (so this period’s

profits are unaffected). Finally, any set of invitations and fees is optimal for å since

å has no sellers and receives 0 following equilibrium continuation play; moreover, any

acceptance/rejection of invitations is optimal for å since å has no buyers and receives 0

following equilibrium continuation play.
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Case 3: Effective price deviation by å. Showing that all agents other than å follow

prescribed play with respect to making invitations to and accepting invitations from

agents other than å is exactly as in the collusive pricing case. Moreover, it is immediate

that å’s prescribed actions are optimal:

• Making any invitation with a fee greater than p̊aS is not optimal as such an invitation

will be accepted but result in lower profits this period and have no effect on profits

in future periods for å.

• Making any invitation with a fee less than p̊aS is not optimal as no such invitation

will be accepted and have no effect on profits in future periods for å.

• Accepting an invitation with a fee less than −p̊aB is not optimal as it results in

lower profits this period and has no effect on profits in future periods.

• Not accepting an invitation with a fee greater than −p̊aB is not optimal as it results

in lower profits this period and has no effect on profits in future periods.

That an agent a is better off following his prescribed actions than if he invited å with

a fee of −p̊aB and accepted an invitation from å with a fee of p̊aS (and followed his

prescribed actions with respect to other agents) is proven in the text.

Making and Responding to Invitations in the Collusive Punishment Phase

Cases 1 and 2: Collusive Pricing and Ineffective Price Deviations by â.

The analysis here is analogous to that of Case 2 during the cooperation phase.

Case 3: Effective price deviation by â. The analysis here follows as in the analysis of

Case 3 of the cooperation phase, except that the in-period profits from working with

other agents now depend on q?B and q?S instead of p?B and p?S. In particular, the total
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payoff for a from following his prescribed actions is (cf. (22))

α

1− α(1− κS)︸ ︷︷ ︸
Mass of sellers
represented by a

(1− κB)︸ ︷︷ ︸
Mass of buyers
represented by

agents other than â

(q?B + q?S)︸ ︷︷ ︸
Profit per
transaction︸ ︷︷ ︸

Profits from working with agents
other than â this period

+ δ

1− δ
α

1− α(q?B + q?S)︸ ︷︷ ︸
Payoff in future periods from adhering

while the payoff for working with â is given by (cf. (11))

α

1− α(1− κS)(1− κB)(q?B + q?S)︸ ︷︷ ︸
Profits from working with agents

other than â this period

+

α

1− α(1− κS)︸ ︷︷ ︸
Mass of sellers
represented by a

κB︸︷︷︸
Mass of buyers
represented by â

(pâB + q?S)︸ ︷︷ ︸
Profit per
transaction

+ α

1− α(1− κB)︸ ︷︷ ︸
Mass of buyers
represented by a

κS︸︷︷︸
Mass of sellers
represented by â

(q?B + pâS)︸ ︷︷ ︸
Profit per
transaction︸ ︷︷ ︸

Payoff from working with å

.

Since pâB ≤ q?B and pâS ≤ q?S, the analysis that it is optimal for a to reject working with

â so long as δ ≥ 1
2 is analogous.

Agent Selection in the Collusive Punishment Phase

The analysis after collusive pricing (Case 1) is identical. After a effective or ineffective price

deviation by an agent â (Cases 2–3) the analysis is similar to that of price deviations in the

cooperation phase, except that the other agents are now offering prices of q?B and q?S instead

of p?B and p?S. Thus, we find that, for a price deviation to be effective during a collusive

punishment phase, we need that

pâB ≤ vB −
1
κS

(vB − q?B) = q◦B and pâS ≤ vS −
1
κB

(vS − q?S) = q◦S.
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C.3 Proof of Theorem 22

The proof proceeds as the proof of Theorem 11 except that the buyer deviation prices are now

p◦B = max
{

0, vB −
1
κS

(vB − p?B)
}

q◦B = max
{

0, vB −
1
κS

(vB − q?B)
}
.

Intuitively, these buyer deviation prices reflect the fact that, under a rebate, no agent

(including a price-deviating agent) can charge a price less than 0; thus, the most tempting

price offer you can make to buyers after a price deviation is 0. The proof follows mutatis

mutandis to the proof of Theorem 11 with these substitutions.2222

C.4 Proof of Theorem 33

We now formally construct a strategy profile that sustains (p?B, p?S). To simplify the exposition,

we first define distinguished actions for buyers and sellers:

1. A buyer lists buyer-exclusive agents arbitrarily by reporting with equal probability each

ranking that includes every buyer-exclusive agent; similarly, a seller lists seller-proficient

agents arbitrarily by reporting with equal probability each ranking that includes every

seller-proficient agent.

2. A buyer prioritizes agent a among buyer-exclusive agents by reporting with equal

probability each ranking that both includes every buyer-exclusive agent and ranks a

first; similarly, prioritizes agent a among seller-proficient agents by reporting with equal

probability each ranking that both includes every seller-proficient agent and ranks a

first.

3. A buyer deprioritizes agent a among buyer-exclusive agents by reporting with equal
22Note that in our proof that agents will not work with a price deviator during the cooperation phase, we

used the fact that p?B + p̊aS ≤ vB + vS and p̊aB + p?S ≤ vB + vS to place an upper bound on the profit per
transaction; see (11) and (22). A similar argument holds for the collusive punishment phase.
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Adhere
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Two-Sided
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Excluded

Buy-Side
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Deviator
Excluded

Figure 7: Simplified automaton representation of the equilibrium we consider; in particular,
we do not show how play may evolve from the sell-side and two-sided collusive punishment
phases. Labeled nodes are phases; unlabeled nodes are intermediate phases, which represent
the branching of transitions based on behavior in the later steps of the game.
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probability each ranking that both includes every buyer-exclusive agent and ranks a

last; similarly, deprioritizes agent a among seller-proficient agents by reporting with

equal probability each ranking that both includes every seller-proficient agent and ranks

a last.

We further define distinguished actions for agents in the network formation steps:

1. The regular network forms with standard fees when:

• Each seller-proficient agent a invites each buyer-exclusive agent ã with a fee that

demands ã’s buyer price when transactions create non-negative surplus, i.e., a fee

of −max{pãB,−paS} and does not invite any other seller-proficient agent.

• Each seller-proficient agent rejects any invitation from another seller-proficient

agent.

• Each buyer-exclusive agent ã accepts every invitation with a fee greater than or

equal to −pãB.

2. The network excluding (the seller-proficient agent) a forms with standard fees when:

• Each seller-proficient agent other than a invites each buyer-exclusive agent ã

with a fee that demands ã’s buyer price when transactions create non-negative

surplus, i.e., a fee of −max{pãB,−paS}, and every buyer-exclusive agent ã accepts

every invitation with an offer greater than or equal to −pãB. Moreover, each

seller-proficient agent other than a does not invite any other seller-proficient agent

and each seller-proficient agent other than a rejects any invitation from another

seller-proficient agent.

• The seller-proficient agent a invites each buyer-exclusive agent with a fee of paS

and does not invite any other seller-proficient agent. The seller-proficient agent

a accepts the invitation from any other seller-proficient agent ǎ if and only if

paB + fa←ǎ − c ≥ 0.
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• Each buyer-exclusive agent ã accepts every invitation from a seller-proficient agent

other than a with a fee greater than or equal to −pãB; ã accepts an invitation from

a if and only f ã←a > paS.

Thus, the regular network forms among agents other than a and no agent forms any

links with a.

3. The network treating (the seller-proficient agent) a as a buyers’ agent forms with

standard fees when:

• Each seller-proficient agent â other than a invites each buyer-exclusive agent ã

with a fee that demands ã’s buyer price when transactions create non-negative

surplus, i.e., a fee of −max{pãB,−pâS}, invites a with a fee of −max{pãB − c,−pâS},

and does not invite any other seller-proficient agent.

• The seller-proficient agent a does not make any invitations.

• Each seller-proficient agent other than a rejects any invitation from another

seller-proficient agent.

• The seller-proficient agent a accepts every invitation with a fee greater than or

equal to −paB + c.

• Each buyer-exclusive agent ã accepts every invitation with a fee greater than or

equal to −pãB.

We also define the buyer deviation price in the cooperation phase as p◦B = vB− 1
κS

(vB−p?B)

and the seller deviation price p◦S = vS− 1
κB

(vS−p?S) = vS; these are the prices at which buyers

and sellers will be willing to work with a deviating agent in the cooperation phase. During the

collusive punishment phase, prices are q?B = (1− κS)vB − κSvS + κSc and q?S = vS. We define

the buyer deviation price during the collusive punishment phase as q◦B = vB − 1
κS

(vB − q?B)

and the seller deviation price as q◦S = vS − 1
κB

(vS − q?S) = vS; these are the prices at

which buyers and sellers will be willing to work with an agent who deviates in the collusive
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punishment phase. We also define the fees g? and h? during the two-sided and sell-side

collusive punishment phases, respectively, as in the text. Finally, we suppress here detailing

the strategies after mutual deviations, i.e., after two or more agents simultaneously deviate:

since no agent expects any other agent to deviate, such cases have no effect on incentives.

The strategy profile that sustains p?B and p?S consists of four phases. In the cooperation

phase:

1. Each buyer-exclusive agent offers a buyer price p?B and each seller-proficient agent offers

a seller price p?S.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each buyer-exclusive agent has offered a buyer price

p?B and each seller-proficient agent has offered a seller price p?S. Buyers list buyer-

exclusive agents arbitrarily and sellers list seller-proficient agents arbitrarily.

Case 2a: Appealing price deviation by ǎ ∈ AB: Each buyer-exclusive agent ex-

cept ǎ has offered a buyer price p?B, the buyer-exclusive agent ǎ has offered a buyer

price pǎB ∈ [−p?S, p?B), and each seller-proficient agent has offered a seller price p?S.

Buyers prioritize ǎ among buyer-exclusive agents2323 and sellers list seller-proficient

agents arbitrarily.

Case 2b: Unappealing price deviation by ǎ ∈ AB: Each buyer-exclusive agent ex-

cept ǎ has offered a buyer price p?B, the buyer-exclusive agent ǎ has offered a buyer

price pǎB ∈ (−∞,−p?S) ∪ (p?B,∞),2424 and each seller-proficient agent has offered a

seller price p?S. Buyers deprioritize ǎ among buyer-exclusive agents and sellers list

seller-proficient agents arbitrarily.
23We could also construct an equilibrium (with the same prices) in which a buyer-exclusive agent who

deviates on price does not attract any buyers and is excluded from the network. This requires checking
additional incentive constraints and so, for simplicity, we use the strategies delineated here.

24Note that a price deviation can be unappealing for two reasons: If the buyer price is too low, ǎ will not
receive any acceptable invitations from seller-proficient agents. If the buyer price is too high, buyers are
better off working with agents offering the lower price p?B .

54



Case 3: Ineffective price deviation by å ∈ AS: Each buyer-exclusive agent has

offered a buyer price p?B, each seller-proficient agent except å has offered a seller

price p?S, and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that (p̊aB, p̊aS) ≥ (p◦B, p◦S) but

not (p◦B, p◦S).2525 Buyers list buyer-exclusive agents arbitrarily and sellers deprioritize

å among seller-proficient agents.

Case 4a: Appealing buy-side price deviation by å ∈ AS: Each buyer-exclusive

agent has offered a buyer price p?B, each seller-proficient agent except å has offered

a seller price p?S, and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that p̊aB ∈ [−p?S + c, p?B)

and p̊aS > p◦S = vS. Buyers prioritize å among buyer-exclusive agents and sellers

deprioritize å among seller-proficient agents.

Case 4b: Unappealing buy-side price deviation by å ∈ AS: Each buyer-exclusive

agent has offered a buyer price p?B, each seller-proficient agent except å has of-

fered a seller price p?S, and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that p̊aB ∈

(−∞,−p?S + c) ∪ (p?B,∞) and p̊aS > p◦S = vS. Buyers list buyer-exclusive agents

arbitrarily and sellers deprioritize å among seller-proficient agents.

Case 5: Sell-side price deviation by å ∈ AS: Each buyer-exclusive agent has of-

fered a buyer price p?B, each seller-proficient agent except å has offered a seller price

p?S, and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that p̊aB > p◦B and p̊aS < p◦S = vS.

Buyers list buyer-exclusive agents arbitrarily and sellers deprioritize å among

seller-proficient agents.

Case 6: Effective price deviation by å: Each buyer-exclusive agent has offered a

buyer price p?B, each seller-proficient agent except å has offered a seller price p?S, and

å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that (p̊aB, p̊aS) ≤ (p◦B, p◦S). Buyers prioritize

å among buyer-exclusive agents and sellers prioritize å among seller-proficient

agents.
25Throughout, when considering off-path price offers, we consider an agent who does not make an offer to

buyers (sellers) to have offered buyers (sellers) an infinite buyer (seller) price.
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3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Case 1: Collusive pricing. The regular network forms with standard fees.

Case 2: Price deviation by a buyer-exclusive agent ǎ ∈ AB. The regular network

forms with standard fees.2626

Case 3: Ineffective price deviation by å ∈ AS. The network excluding å forms

with standard fees.

Case 4: Buy-side price deviation by å ∈ AS. The network treating å as a buyers’

agent forms with standard fees.

Case 5: Sell-side price deviation by å ∈ AS. The network excluding å forms with

standard fees.

Case 6: Effective price deviation by å ∈ AS. The network excluding å forms with

standard fees.

4. Under collusive pricing or after a price deviation by a buyer-exclusive agent, if the

regular network with standard fees forms, play continues in the cooperation phase.

After an effective or ineffective price deviation by å ∈ AS, if the network excluding å

forms with standard fees, play proceeds to the two-sided å-collusive punishment phase.

After a buy-side price deviation by å ∈ AS, if the network treating a as a buyers’ agent

forms with standard fees forms, then play continues in the cooperation phase. After a

sell-side price deviation by å ∈ AS, if the network excluding å forms with standard fees,

play proceeds to the sell-side å-collusive punishment phase. Otherwise, play proceeds

to the Bertrand reversion phase.

In the two-sided å-collusive punishment phase:
26Recall that both “standard fees” as well as the “regular network” itself depend on the prices offered by

buyer-exclusive agents.
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1. Each buyer-exclusive agent offers a buyer price q?B and each seller-proficient agent offers

a seller price q?S.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each buyer-exclusive agent has offered a buyer price q?B

and each seller-proficient agent has offered a seller price q?S. Buyers list buyer-

exclusive agents arbitrarily and sellers deprioritize å among seller-proficient agents.

Case 2a: Appealing price deviation by ǎ ∈ AB: Each buyer-exclusive agent ex-

cept ǎ has offered a buyer price q?B, the buyer-exclusive agent ǎ has offered a buyer

price pǎB ∈ [−q?S, q?B), and each seller-proficient agent has offered a seller price q?S.

Buyers prioritize ǎ among buyer-exclusive agents and sellers deprioritize å among

seller-proficient agents.

Case 2b: Unappealing price deviation by ǎ ∈ AB: Each buyer-exclusive agent ex-

cept ǎ has offered a buyer price q?B, the buyer-exclusive agent ǎ has offered a buyer

price pǎB ∈ (−∞,−q?S) ∪ (q?B,∞), and each seller-proficient agent has offered a

seller price q?S. Buyers deprioritize ǎ among buyer-exclusive agents and sellers

deprioritize å among seller-proficient agents.

Case 3: Ineffective price deviation by â ∈ AS: Each buyer-exclusive agent has

offered a buyer price q?B, each seller-proficient agent except â has offered a seller

price q?S, and â has offered (pâB, pâS) 6= (q?B, q?S) such that (pâB, pâS) ≥ (q◦B, q◦S) but

not (q◦B, q◦S). Buyers list buyer-exclusive agents arbitrarily and sellers deprioritize

â among seller-proficient agents.

Case 4a: Appealing buy-side price deviation by â ∈ AS: Each buyer-exclusive

agent has offered a buyer price q?B, each seller-proficient agent except â has offered

a seller price q?S, and â has offered (pâB, pâS) 6= (q?B, q?S) such that pâB ∈ [−q?S + c, q?B)

and pâS > q◦S = vS. Buyers prioritize â among buyer-exclusive agents and sellers

deprioritize â among seller-proficient agents.
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Case 4b: Unappealing buy-side price deviation by â ∈ AS: Each buyer-exclusive

agent has offered a buyer price q?B, each seller-proficient agent except â has of-

fered a seller price q?S, and â has offered (pâB, pâS) 6= (q?B, q?S) such that pâB ∈

(−∞,−q?S + c) ∪ (q?B,∞) and pâS > q◦S = vS. Buyers list buyer-exclusive agents

arbitrarily and sellers deprioritize â among seller-proficient agents.

Case 5: Sell-side price deviation by â ∈ AS: Each buyer-exclusive agent has of-

fered a buyer price q?B, each seller-proficient agent except â has offered a seller

price q?S, and â has offered (pâB, pâS) 6= (q?B, q?S) such that pâB > p◦B and pâS < q◦S = vS.

Buyers list buyer-exclusive agents arbitrarily and sellers deprioritize â among

seller-proficient agents.

Case 6: Effective price deviation by â: Each buyer-exclusive agent has offered a

buyer price q?B, each seller-proficient agent except â has offered a seller price q?S, and

â has offered (pâB, pâS) 6= (q?B, q?S) such that (pâB, pâS) ≤ (q◦B, q◦S). Buyers prioritize

â among buyer-exclusive agents and sellers prioritize â among seller-proficient

agents.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Case 1: Collusive pricing. The network excluding å forms with standard fees.

Case 2: Price deviation by a buyer-exclusive agent ǎ ∈ AB. The network exclud-

ing å forms with standard fees.

Case 3: Ineffective price deviation by â ∈ AS. The network excluding â forms

with standard fees.

Case 4: Buy-side price deviation by â ∈ AS. The network treating â as a buyers’

agent forms with standard fees.

Case 5: Sell-side price deviation by â ∈ AS. The network excluding â forms with

standard fees.
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Case 6: Effective price deviation by â ∈ AS. The network excluding â forms with

standard fees.

4. Under collusive pricing or after a price deviation by a buyer-exclusive agent, if the

network (including fees) implied by equilibrium play forms, then play continues in the

two-sided å-collusive punishment phase phase. After an effective or ineffective price

deviation by â ∈ AS, if the network excluding â forms with standard fees forms, then

play proceeds to the two-sided â-collusive punishment phase. After a buy-side price

deviation by â ∈ AS, if network treating â as a buyers’ agent forms with standard fees,

then play continues in the two-sided å-collusive punishment phase. After a sell-side

price deviation by â ∈ AS, if the network excluding â forms with standard fees, then

play proceeds to the sell-side â-collusive punishment phase. Otherwise, play proceeds

to the Bertrand reversion phase.

The sell-side å-collusive punishment phase proceeds exactly as the two-sided å-collusive

punishment phase except that, under collusive pricing, each seller-proficient agent invites each

buyer-exclusive agent, offering a fee of h?, each buyer-exclusive agent accepts every invitation

with an offer greater than or equal to h?, and, play continues in the sell-side å-collusive

punishment phase (instead of the two-sided å-collusive punishment phase) as appropriate.

The Bertrand reversion phase proceeds as expected, with each buyer-exclusive agent

announcing a price of 0 on the buy side, each seller-proficient agent announcing a price of 0

on the sell side, buyers and sellers allocating themselves optimally given subsequent network

formation (given prices), and statically optimal network formation.

The proof proceeds as in Theorem 11 mutatis mutandis except for the differences described

in Section 4.2.24.2.2.
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C.5 Proof of Theorem 44

As in our prior proofs, to simplify the exposition, we first define distinguished actions for

buyers and sellers:

1. A buyer lists seller-proficient agents arbitrarily by reporting each ranking with equal

probability that includes every seller-proficient agent; similarly, a seller lists seller-

proficient agents arbitrarily by reporting each ranking with equal probability that

includes every seller-proficient agent.

2. A buyer prioritizes agent a among seller-proficient agents by reporting with equal

probability each ranking that both includes every seller-proficient agent and ranks a

first; similarly, a seller prioritizes agent a among seller-proficient agents by reporting

with equal probability each ranking that both includes every seller-proficient agent and

ranks a first.

3. A buyer deprioritizes agent a among seller-proficient agents by reporting with equal

probability each ranking that both includes every seller-proficient agent and ranks a

last; similarly, a seller deprioritizes agent a among seller-proficient agents by reporting

with equal probability each ranking that both includes every seller-proficient agent and

ranks a last.

We further define distinguished actions for agents in the network formation steps:

1. The full network among seller-proficient agents forms when each seller-proficient agent

a invites every other seller-proficient agent ã, and every seller-proficient agent ã accepts

every invitation.

2. The network among seller-proficient agents excluding a forms when:

• Each seller-proficient agent other than a does not invite a and invites every other

seller-proficient agent ã.
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• Agent a invites every other agent.

• Each seller-proficient agent ã other than a accepts every invitation he receives

except invitations from a.

• Agent a accepts an invitation from any other agent.

Thus, the full network forms among seller-proficient agents other than a and no (seller-

proficient) agent forms any links with a.

3. No network forms when no (seller-proficient) agent invites any other (seller-proficient)

and a (seller-proficient) agent a accepts an invitation if and only if paB − c ≥ 0.

We also define the buyer deviation price in the cooperation phase as p◦B = vB− 1
κS

(vB−p?B)

and the seller deviation price p◦S = vS− 1
κB

(vS−p?S) = vS; these are the prices at which buyers

and sellers will be willing to work with a deviating agent in the cooperation phase. During the

collusive punishment phase, prices are q?B = (1− κS)vB − κSvS and q?S = vS. We define the

buyer deviation price during the collusive punishment phase as q◦B = vB − 1
κS

(vB − q?B) and

the seller deviation price as q◦S = vS − 1
κB

(vS − q?S) = vS; these are the prices at which buyers

and sellers will be willing to work with an agent who deviates in the collusive punishment

phase. Finally, we suppress here detailing the strategies after mutual deviations, i.e., after

two or more agents simultaneously deviate: since no agent expects any other agent to deviate,

such cases have no effect on incentives.

As in Theorem 11, the strategy profile that sustains p?B and p?S consists of three phases: In

the cooperation phase:

1. Every seller-proficient agent offers a buyer price p?B and a seller price p?S and buyer-

exclusive agents do not make offers.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each seller-proficient agent has offered (p?B, p?S). Buyers

and sellers list seller-proficient agents arbitrarily.
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Case 2: Ineffective price deviation by å ∈ AS: Each seller-proficient agent ex-

cept å has offered (p?B, p?S) and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that

(p̊aB, p̊aS) � (p◦B, p◦S). Buyers and sellers deprioritize agent å among seller-proficient

agents.

Case 3: Effective price deviation by å ∈ AS: Each agent except å has offered

(p?B, p?S) and å has offered (p̊aB, p̊aS) 6= (p?B, p?S) such that (p̊aB, p̊aS) ≤ (p◦B, p◦S). Buyers

and sellers prioritize agent å among seller-proficient agents.

Case 4: Price deviation by ǎ ∈ AB: Each seller-proficient agent has offered (p?B, p?S)

and a buyer-exclusive agent ǎ has offered a price of pǎB. Buyer list seller-proficient

agents arbitrarily (and, in particular, do not rank ǎ) and sellers list seller-proficient

agents arbitrarily.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Case 1: Collusive pricing. The full network among seller-proficient agents forms.

Cases 2 and 3: Price deviation by å ∈ AS. If p?B − c ≥ 0 then the network among

seller-proficient agents excluding a forms; otherwise, no network forms.

Case 4: Price deviation by ǎ ∈ AB. The full network among seller-proficient agents

forms.

4. Under collusive pricing or a price deviation by a buyer-exclusive agent, if the network

implied by equilibrium play forms, play continues in the cooperation phase. After a

price deviation by a seller-proficient agent å, if the network implied by equilibrium play

forms, play proceeds to the å-collusive punishment phase. Otherwise, play proceeds to

the Bertrand reversion phase.

In the å-collusive punishment phase:
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1. Every seller-proficient agent other than å offers a buyer price q?B and a seller price q?S

and buyer-exclusive agents do not make offers.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each seller-proficient agent has offered (p?B, p?S). Buyers

and sellers deprioritize agent å among seller-proficient agents.

Case 2: Ineffective price deviation by â ∈ AS: Each seller-proficient agent ex-

cept â has offered (q?B, q?S) and â has offered (pâB, pâS) 6= (q?B, q?S) such that (pâB, pâS) �

(q◦B, q◦S). Buyers and sellers deprioritize agent â among seller-proficient agents.

Case 3: Effective price deviation by â ∈ AS: Each agent except â has offered

(q?B, q?S) and â has offered (pâB, pâS) 6= (q?B, q?S) such that (pâB, pâS) ≤ (q◦B, q◦S). Buyers

and sellers prioritize agent â among seller-proficient agents.

Case 4: Price deviation by ǎ ∈ AB: Each seller-proficient agent has offered (q?B, q?S)

and a buyer-exclusive agent ǎ has offered a price of pǎB. Buyer list seller-proficient

agents arbitrarily (and, in particular, do not rank ǎ) and sellers list seller-proficient

agents arbitrarily.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Case 1: Collusive pricing. The network among seller-proficient agents excluding a

forms.

Cases 2 and 3: Price deviation by â ∈ AS. If q?B − c ≥ 0 then the network among

seller-proficient agents excluding â forms; otherwise, no network forms.

Case 4: Price deviation by ǎ ∈ AB. The full network among seller-proficient agents

forms.

4. Under collusive pricing or a price deviation by a buyer-exclusive agent, if the network

implied by equilibrium play forms, play continues in the å-collusive punishment phase.
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After a price deviation by a seller-proficient agent â, if the network implied by equilibrium

play forms, play proceeds to the â-collusive punishment phase. Otherwise, play proceeds

to the Bertrand reversion phase.

In the Bertrand reversion phase, each buyer-exclusive agent offers a price of 0 to buyers

and each seller-proficient agent offers a price of 0 to sellers. Buyers rank all buyer-exclusive

agents offering non-negative prices, with those agents offering lower prices ranked higher;

similarly, sellers rank all seller-proficient agents offering non-negative prices, with those agents

offering lower prices ranked higher. Finally, the full network forms.

The proof then proceeds as in Theorem 33 mutatis mutandis except for the differences

described in Section 4.2.34.2.3.

C.6 Proof of Theorem 55

We will show the highest sustainable profits when buyers are represented by buyer-exclusive

agents are found by solving

max
p?B ,p

?
S

{p?B + p?S} (5)

subject to the constraint that no seller-proficient agent can profitably deviate by attracting

both buyers and sellers and not working other agents,

σ

1− δ (p?B + p?S) ≥
((
vB −

1
κS

(vB − p?B)
)

+
(
vS −

1
κB

(vS − p?S)
))
κBκS,

the individual rationality constraints for the buyers and sellers that p?B ≤ vB and p?S ≤ vS,

and the individual rationality constraint for buyer-exclusive agents that p?B ≥ 0. Solving this

linear program yields the price of Theorem 55.

As in our prior proofs, to simplify the exposition, we first define distinguished actions for

buyers and sellers:
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1. A buyer lists buyer-exclusive agents arbitrarily by reporting each ranking with equal

probability that includes every buyer-exclusive agent; similarly, a seller lists seller-

proficient agents arbitrarily by reporting each ranking with equal probability that

includes every seller-proficient agent.

2. A buyer prioritizes agent a among buyer-exclusive agents by reporting with equal

probability each ranking that both includes every buyer-exclusive agent and ranks a

first; similarly, prioritizes agent a among seller-proficient agents by reporting with equal

probability each ranking that both includes every seller-proficient agent and ranks a

first.

3. A buyer deprioritizes agent a among buyer-exclusive agents by reporting with equal

probability each ranking that both includes every buyer-exclusive agent and ranks a

last; similarly, deprioritizes agent a among seller-proficient agents by reporting with

equal probability each ranking that both includes every seller-proficient agent and ranks

a last.

We further define distinguished actions for agents in the network formation steps:

1. The regular network forms when each seller-proficient agent a invites every buyer-

exclusive agent ã, and every buyer-exclusive agent ã accepts every invitation.

2. The network excluding (the seller-proficient agent) a forms when:

• Each seller-proficient agent other than a does not invite a and invites every

buyer-exclusive agent ã.

• Agent a invites every other agent.

• Each buyer-exclusive agent ã accepts every invitation he receives except invitations

from a.

• Agent a accepts an invitation from any other agent.
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Thus, the regular network forms among buyer-exclusive agents and seller-proficient

agents other than a.

3. The network excluding (the buyer-exclusive agent) a forms when:

• Each seller-proficient agent invites every buyer-exclusive agent except a.

• Each buyer-exclusive agent accepts every invitation he receives.

Thus, the regular network forms among buyer-exclusive agents other than a and

seller-proficient agents.

We also define the buyer deviation price in the cooperation phase as p◦B = vB− 1
κS

(vB−p?B)

and the seller deviation price p◦S = vS − 1
κB

(vS − p?S) = vS; these are the prices at which

buyers and sellers will be willing to work with a deviating seller-proficient agent in the

cooperation phase. During the collusive punishment phase, prices are depend on whether σ̂ ≤

κS(1− c
vS
− vB

vS

1−κS
κS

): We have that q?B = κSvB and q?S = κBvS when σ̂ ≥ κS(1− c
vS
− vB

vS

1−κS
κS

);

we have that q?B = 0 and q?S = vB
κB
κS

(1−κS)+vS(1−κB)+κBc when σ̂ ≥ κS(1− c
vS
− vB

vS

1−κS
κS

) We

define the buyer deviation price during the collusive punishment phase as q◦B = vB− 1
κS

(vB−q?B)

and the seller deviation price as q◦S = vS − 1
κB

(vS − q?S) = vS; these are the prices at which

buyers and sellers will be willing to work with an agent who deviates in the collusive

punishment phase. Finally, we suppress here detailing the strategies after mutual deviations,

i.e., after two or more agents simultaneously deviate: since no agent expects any other agent

to deviate, such cases have no effect on incentives.

As elsewhere, the strategy profile that sustains p?B and p?S consists of three phases: In the

cooperation phase:

1. Every buyer-exclusive agent offers a buyer price p?B and every seller-proficient agent

offers a seller price p?S.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:
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Case 1: Collusive pricing: Each buyer-exclusive agent has offered a buyer price p?B

and each seller-proficient agent has offered a seller price p?S. Buyers list buyer-

exclusive agents arbitrarily and sellers list seller-proficient agents arbitrarily.

Case 2: Price deviation by a buyer-exclusive agent ǎ ∈ AB: Each buyer-exclusive

agent except ǎ has offered a buyer price p?B, the buyer-exclusive agent ǎ has of-

fered a price pǎB 6= p?B, and each seller-proficient agent has offered a seller price

p?S. Buyers deprioritize agent ǎ among buyer-exclusive agents and sellers list

seller-proficient agents arbitrarily.

Case 3: Ineffective price deviation by å ∈ AS: Each buyer-exclusive agent has of-

fered a buyer price p?B, each seller-proficient agent other than å has offered a

seller price p?S, and agent å has offered prices (p̊aB, p̊aS) 6= (p?B, p?S) such that

(p̊aB, p̊aS) � (p◦B, p◦S). Buyers list buyer-exclusive agents arbitrarily and sellers

deprioritize å among seller-proficient agents.

Case 4: Effective price deviation by å ∈ AS: Each buyer-exclusive agent has of-

fered a buyer price p?B, each seller-proficient agent other than å has offered a

seller price p?S, and agent å has offered prices (p̊aB, p̊aS) 6= (p?B, p?S) such that

(p̊aB, p̊aS) ≤ (p◦B, p◦S). Buyers prioritize å among buyer-exclusive agents and sellers

prioritize å among seller-proficient agents.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Case 1: Collusive pricing. The regular network forms.

Case 2: Price deviation by a buyer-exclusive agent ǎ ∈ AB. The network exclud-

ing the buyer-exclusive agent ǎ forms.

Cases 3 and 4: Price deviation by å ∈ AS. The network excluding the seller-proficient

agent å forms.
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4. Under collusive pricing or a price deviation by a buyer-exclusive agent, if the network

implied by equilibrium play forms, play continues in the cooperation phase. After a

price deviation by a seller-proficient agent å, if the network implied by equilibrium play

forms, play proceeds to the å-collusive punishment phase. Otherwise, play proceeds to

the Bertrand reversion phase.

In the å-collusive punishment phase:

1. Every buyer-exclusive agent offers a buyer price q?B and every seller-proficient agent

offers a seller price q?S.

2. Buyer and seller behavior depend on the pricing behavior of the agents in Step 1:

Case 1: Collusive pricing: Each buyer-exclusive agent has offered a buyer price q?B

and each seller-proficient agent has offered a seller price q?S. Buyers list buyer-

exclusive agents arbitrarily and sellers list seller-proficient agents arbitrarily.

Case 2: Price deviation by a buyer-exclusive agent ǎ ∈ AB: Each buyer-exclusive

agent except ǎ has offered a buyer price q?B, the buyer-exclusive agent ǎ has offered

a price pǎB 6= q?B, and each seller-proficient agent has offered a seller price q?S. Buyers

deprioritize agent ǎ among buyer-exclusive agents and sellers list seller-proficient

agents arbitrarily.

Case 3: Ineffective price deviation by â ∈ AS: Each buyer-exclusive agent has of-

fered a buyer price q?B, each seller-proficient agent other than â has offered a

seller price q?S, and agent â has offered prices (pâB, pâS) 6= (q?B, q?S) such that

(pâB, pâS) � (q◦B, q◦S). Buyers list buyer-exclusive agents arbitrarily and sellers

deprioritize â among seller-proficient agents.

Case 4: Effective price deviation by â ∈ AS: Each buyer-exclusive agent has of-

fered a buyer price q?B, each seller-proficient agent other than â has offered a

seller price q?S, and agent â has offered prices (pâB, pâS) 6= (q?B, q?S) such that
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(pâB, pâS) ≤ (q◦B, q◦S). Buyers prioritize å among buyer-exclusive agents and sellers

prioritize å among seller-proficient agents.

3. The invitations made and accepted also depend on the pricing behavior of the agents

in Step 1:

Case 1: Collusive pricing. The regular network forms.

Case 2: Price deviation by a buyer-exclusive agent ǎ ∈ AB. The network exclud-

ing the buyer-exclusive agent ǎ forms.

Cases 3 and 4: Price deviation by â ∈ AS. The network excluding the seller-proficient

agent â forms.

4. Under collusive pricing or a price deviation by a buyer-exclusive agent, if the network

implied by equilibrium play forms, play continues in the å-collusive punishment phase.

After a price deviation by a seller-proficient agent â, if the network implied by equilibrium

play forms (i.e., â is the only player excluded from the network), play proceeds to

the â-collusive punishment phase. Otherwise, play proceeds to the Bertrand reversion

phase.

In the Bertrand reversion phase, each buyer-exclusive agent offers a price of 0 to buyers

and each seller-proficient agent offers a price of 0 to sellers. Buyers rank all buyer-exclusive

agents offering non-negative prices, with those agents offering lower prices ranked higher;

similarly, sellers rank all seller-proficient agents offering non-negative prices, with those agents

offering lower prices ranked higher. Finally, the regualar network forms.

The solution of the program (55) depends on whether σ̂ ≤ κS(1− c
vS
− vB

vS

1−κS
κS

). There are

two cases:

1. If σ̂ ≤ κS(1− c
vS
− vB

vS

1−κS
κS

), it is immediate that buyer-exclusive agents are willing to

exclude a price-deviating seller since they receive 0 payoffs regardless of their actions.

Moreover, to attract buyers, a price-deviator would have to offer a buyer price less than
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0, and so would not be willing to take his buyers to other agents’ sellers in any case.

Thus, a price-deviator will not work with any other agents.

The proof then proceeds as in Theorem 44 mutatis mutandis.

2. If σ̂ > κS(1 − c
vS
− vB

vS

1−κS
κS

), then recall that q?B = κSvB and q?S = κBvS, and we can

calculate p◦B = vB − 1
κS

(vB − q?B) and p◦S = vS − 1
κB

(vS − q?S).

In this case, both prices are positive, and so barring dynamic incentives agents will be

tempted to work with a price deviator. Thus, we need to check that seller-proficient

agents will not work with a buyer-exclusive agent if he deviates on price. In the

cooperation phase, the payoff to a seller-proficient agent from refusing to invite a

price-deviating buyer-exclusive agent is

δ

1− δσp
?
S

while the payoff from inviting the price-deviating buyer-exclusive agent is

κBσp
?
S

and so it is sufficient that δ ≥ 1
2 . A similar calculation holds in the collusive punishment

phase.

We also need to check that if a seller-proficient agent deviates on prices both buyer-

exclusive and seller-proficient agents will not work with the deviator. To see that

buyer-exclusive agents will not work with a deviator, note that a buyer-exclusive agent

gets
δ

1− δβq
?
B = δ

1− δβκSvB

by refusing to work with the deviator, but at most

βκSp
?
B ≤ βκSvB
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by working with the deviator; thus for δ ≥ 1
2 it is optimal to refuse an invitation from

the deviator. To see that seller-proficient agents will not work with a deviator, note

that a seller-proficient agent gets

δ

1− δσq
?
S = δ

1− δσκBvS

by refusing to work with the deviator, but at most

σκBp
?
S = σκBvS

by working with the deviator; thus for δ ≥ 1
2 it is optimal to refuse an invitation from

the deviator.

Finally, we need to show that at prices (q?B, q?S) no agent will wish to offer prices of

(q◦B, q◦S)—in particular, that an agent getting 0 in the collusive punishment phase will

not wish to offer prices of (q◦B, q◦S). To see this, we calculate that

κBκS(q◦B + q◦S − c) = κBκS

(
vB −

1
κS

(vB − q?B) + vS −
1
κB

(vS − q?S)− c
)

= κBκS

(
vB −

1
κS

(vB − κSvB) + vS −
1
κB

(vS − κBvS)− c
)

= κBvB(2κS − 1) + κSvS(2κB − 1)− κBκSc

≤ 0.

A similar calculation holds in the collusive punishment phase.

The proof then proceeds as in Theorem 44 mutatis mutandis.
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D Analyzing Asymmetric Equilibria in the Stage Game

In the main construction of our equilibrium, we have assumed that buyers and sellers treat

identically agents who are treated identically by other agents (with respect to network

formation). Suppose, by contrast, that buyers and sellers allocated themselves selectively

following a price deviation not only by working preferentially with the price deviator but

also with another non-deviating agent; the buyers and sellers could then potentially unravel

collusion by incentivizing that non-deviating agent to work with the price deviator. For

example, if all buyers and sellers coordinated on listing the price deviator first and a particular

non-deviating agent a second following a price deviation, then a would fill to capacity; thus

a would have a much stronger temptation to invite and/or accept an invitation from the

price deviator. Indeed, given the continuation play that we use in the construction of our

equilibrium, such an agent a would deviate from the equilibrium to work with the price

deviator.

In fact, buyer-and-seller coordination-proofness would imply that this behavior would

occur. A set of buyers and sellers could coordinate to work with a price deviator and a subset

of non-price deviators, incentivizing those non-price deviators to work with the price deviator.

However, a minor modification to the analysis in the text rules this out; regardless of how

buyers and sellers allocate themselves among non-deviating agents, future payoffs can be

constructed such that all non-deviating agents exclude the price deviator. To do this, we

must condition future payoffs to each non-deviating agent on his temptation to work with

the price deviator—we do this by allocating sellers in future periods to each agent based on

that agent’s temptation to work the price deviator today.

First, consider a price deviation in the cooperation phase. We show that an agent a is

better off following his prescribed actions than if he invited å with a fee of −p̊aB and accepted

an invitation from å with a fee of p̊aS (and followed his prescribed actions with respect to other

agents). Let κ̃◦B be the share of buyers that selected the deviating agent å and let κ̃◦S be the

share of sellers that selected å. Let κ̃◦B be the share of buyers that selected a non-deviating
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agent a and let κ̃aS be the share of sellers that selected a. Finally, let κaB be the share of

sellers allocated to agent a in future collusive play. The total payoff for a from following his

prescribed actions is

κ̃aS︸︷︷︸
Mass of sellers
represented by a

(1− κ̃◦B)︸ ︷︷ ︸
Mass of buyers
represented by

agents other than å

(p?B + p?S)︸ ︷︷ ︸
Profit per
transaction︸ ︷︷ ︸

Profits from working with agents
other than å this period

+ δ

1− δκ
a
S(q?B + q?S)︸ ︷︷ ︸

Payoff in future periods from adhering

(6)

while the payoff from working with å is at most

κ̃aS(1− κ̃◦B)(p?B + p?S)︸ ︷︷ ︸
Profits from working with agents

other than å this period

+

κ̃aS︸︷︷︸
Mass of sellers
represented by a

κ̃◦B︸︷︷︸
Mass of buyers
represented by å

(p̊aB + p?S)︸ ︷︷ ︸
Profit per
transaction

+ κ̃aB︸︷︷︸
Mass of buyers
represented by a

κ̃◦S︸︷︷︸
Mass of sellers
represented by å

(p?B + p̊aS)︸ ︷︷ ︸
Profit per
transaction︸ ︷︷ ︸

Payoff from working with å

. (7)

Since the payoff to working with non-deviating agents is identical regardless of the decision

to work with the deviating agent, we have the condition for adhering as

δ

1− δκ
a
S(q?B + q?S) ≥ κ̃aSκ̃

◦
B(p̊aB + p?S) + κ̃aBκ̃

◦
S(p?B + p̊aS)

Observe the following:

• Since q?B = (1− κS)vB − κSvS and q?S = vS, we have that q?B + q?S = (vB + vS)(1− κS).

• Since p̊aB ≤ p◦B ≤ p?B ≤ vB and p?S = vS, we have that p̊aB + p?S ≤ vB + vS.

• Since p̊aS ≤ p◦S = p?S = vS and p?B ≤ vB, we have that p?B + p̊aS ≤ vB + vS.
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Hence, it is sufficient that

δ

1− δκ
a
S(1− κS) ≥ κ̃◦Bκ̃

a
S + κ̃aBκ̃

◦
S (8)

for each agent a other than å.

Thus, to ensure that each agent is incentivized to not work with the price deviator, we

need to find κaS for each agent a so that each κaS ≤ κS and that ∑a∈Ar{̊a} κ
a
S = 1.

To see that κaS ≤ κS, note that the right-hand side (88) is maximized when κ̃◦B = κ̃aB =

κB ≤ 1
3 and κ̃◦S = κ̃aS = κS ≤ 1

3 . Thus, it is enough that

δ

1− δκ
a
S(1− κS) ≥ 2

9;

this can always be satisfied for δ ≥ 1
2 by setting κaS = 1

3 .

To see that ∑a∈Ar{̊a} κ
a
S ≤ 1, we sum (88) over all a ∈ Ar {̊a} to obtain the requirement

that

δ

1− δ
∑

a∈Ar{̊a}
κaS =

κ̃◦B
(∑

a∈Ar{̊a} κ̃
a
S

)
+ κ̃◦S

(∑
a∈Ar{̊a} κ̃

a
B

)
1− κS

≥ κ̃◦B(1− κ̃◦S) + κ̃◦S(1− κ̃◦B)
1− κS

(9)

as only buyers and sellers who do not work with the price deviator can work with the other

agents. Note that (99) is maximized when κ̃◦B = κB and κ̃◦S = κS as we must have that κ̃◦B < 1
2

and κ̃◦S < 1
2 . Thus, we need that

δ

1− δ
∑

a∈Ar{̊a}
κaS ≥

κB(1− κS) + κS(1− κB)
1− κS

.
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Thus, since κB ≥ κS, it is sufficient that

δ

1− δ
∑

a∈Ar{̊a}
κaS ≥ κB + κS.

Hence, we can find κaS that incentivize each non-deviating agent to not work with the price

deviator so long as δ ≥ 1
2 as κS ≤ κB ≤ 1

3 .

An analogous construction can incentivize agents to not work with a price deviator in the

collusive punishment phase.
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