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1. Introduction

We start by overviewing the problem of portfolio selection and
Markowitz’s mean-variance procedure for solving it to show how
interest in cardinality constrained versions of the basic problem
has evolved within this framework. By cardinality constrained, it
is meant that if there is to be investment in a security, it is to be
of at least some minimum amount (a buyin threshold), and that
there is also a restriction on the number of securities to be held
in a portfolio (called a cardinality constraint). Despite the fact that
Markowitz portfolio selection has been around for over 70 years, it
has been in only the last third of this period that interest in car-
dinality constrained versions of the mean-variance approach has
come to the forefront.

Why it did not start earlier was because it took until this time
for the dream of being able to solve mean-variance portfolio se-
lection problems of almost any size to be achieved - only to find
out that in large problems, virtually all generated solutions are un-
usable. What is meant by this? Assume an investor is trying to
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build a portfolio containing 20 securities. With the solutions pro-
duced by Markowitz’s mean-variance approach containing, say, 35
to 40 securities (typical numbers), the solutions are not useful to
the investor. As another example, suppose you are the manager of
a mutual fund that traditionally contains 100 securities. Again, so-
lutions with cardinalities in the range of 35 to 40 are of no use
to you when in need of a number like 100 or so. Even if you were
looking for a solution in the 35 to 40 range, it is highly likely there
would be buyin threshold violations (more on this as we go) which
wouldn’t satisfy your situation either.

Indeed, cardinality constrained formulations of the mean-
variance problem can be constructed whose solutions would be
able to provide cardinality constrained users with what they would
be looking for, if it were only possible to solve the problem, as such
problems have eluded solution over the years. However, the con-
tribution of this paper is the approach, the likes of which are dif-
ferent from any other approach, that enables the solution of cardi-
nality constrained mean-variance portfolio selection problems with
up to at least 1000 securities in size, in remarkably little time.

1.1. Background

As for history, while the idea of portfolio selection is widely
known, that term and others relating to it that we take for granted
really only go back to 1952. That was the year in which the
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paper by Markowitz (1952) was published for which he won the
Nobel Prize. That paper has been of such impact that it can be
viewed as dividing finance into two parts, with the first being be-
fore Markowitz (1952), and the second part being after.

It takes effort to imagine the field of investments prior to 1952
as there was no notion of an efficient portfolio, there was no no-
tion of an efficient frontier, risk had not been settled upon, and di-
versification was for all practical purposes not putting all of one’s
eggs in the same basket. The focus of the era was on identify-
ing good individual stocks to buy. But how to do this and know
how much to invest in each was unclear as the only techniques
available were mostly drawn from experience and common sense
(such as in Graham & Dodd, 1934) as there was, beyond discounted
cashflows, no formal theory of investments at the time. More on
what investing was like before Markowitz can be found in Beattie,
Brown, & Kvilhaug (2022) and Cifuentes (2022).

But all changed with Markowitz (1952). By introducing the con-
cept of an efficient portfolio, Markowitz was able to tie together
the best of what had been out there into an overarching the-
ory expressible within the structure of a mathematical program-
ming problem. The features of that paper are (a) its optimization
model (almost certainly the most written about optimization prob-
lem of all time) by which efficient solutions are generated and (b)
its decision-making prescription by which investors are to inter-
act with the efficient solutions generated to identify one’s optimal
portfolio. As for (a), the optimization model is

min x’ ¥ x (M)

stu™x>p
XeS

pe [pmin’ /Omax]

where

(1) S is the feasible region defined by x; > 0 for all i along with
1"x =1, and at the discretion of the investor, other linear
constraints as proposed in Markowitz (1956),

(2) n is the number of securities eligible for use in constructing
a portfolio,

(3) xeS is a portfolio whose components x; (often called
weights) are the proportions of capital invested in the n dif-
ferent securities,

(4) m € R" is the vector of the individual security expected re-
turns,

(5) X is the n x n covariance matrix of security returns whose
elements oj; specify the covariances between the returns of
securities i and j,

(6) xTXx is the matrix expression of portfolio return variance,

(7) muTx is expected portfolio return, and

(8) (M) is to be solved for all p in the interval indicated where
Pmin iS the value of expected portfolio return at the solution
of minimum variance and pmax the value of expected port-
folio return at the solution of maximum return.

This is the mean-variance model of Markowitz portfolio selec-
tion, where “mean” is expected portfolio return s x and “variance”
is short for portfolio return variance x’ Xx, the quantity that mea-
sures risk. Note how the model’s emphasis is on portfolios rather
than on individual securities as was earlier the case.

With a portfolio x € S being efficient if and only if there ex-
ists no other portfolio whose risk is better without its expected
return being worse (or whose expected return is better without
its risk being worse), this means that when (M) is solved for all
0 € [ Pmin» Pmax], the set of all efficient portfolios is returned. The
importance of this set, the efficient set, is that it contains, and only
contains, all portfolios that could be optimal for an investor. This
means that the investor’s most preferred portfolio in the set is the
investor’s optimal portfolio. But since efficient sets typically con-
tain many points, it would be nice if some kind of assistance were
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available. This is where (b), the decision-making part of Markowitz
(1952), comes in. Based upon the efficient frontier, which is the
curve that results from plotting the mean-variance combinations of
all portfolios in the efficient set, the usefulness of the curve is that
by selecting the most preferred mean-variance combination on it,
the investor will then have, after taking its inverse image, his or
her optimal portfolio.

This provides an accommodating environment for an investor.
It allows different investors to have different optimal solutions de-
pending upon where along the efficient frontier their most pre-
ferred mean-variance combination lies. Furthermore, the environ-
ment allows investors, when picking their most preferred mean-
variance combination, to see all other candidates for optimality at
the same time. Thus, when picking one’s most preferred point, the
decision maker is aware that this is a global choice.

While computers didn’t have the slightest chance of being able
to solve even a toy version of (M) in 1952, this didn’t stop the pa-
per’s theoretical content from having effect. In contrast to before,
Markowitz (1952) presented a concise and insightful view of what
the portfolio selection problem is, how it is to be solved ideally,
and how the solution process can be tempered to the needs of dif-
ferent investors. Moreover, due to the material’s teachability, this
has enabled universities for many years now to have taught the
essentials of Markowitz portfolio selection to large numbers of stu-
dents around the world without getting the students caught up in
the model’s implementation difficulties.

This is fortunate as there have always been implementation dif-
ficulties with the model of Markowitz portfolio selection. Despite
the impact of Markowitz (1952) on finance, there has always been
the question that if Markowitz portfolio selection is so important,
how come its model is not used more in practice? In their review
of the 60 years of portfolio selection since 1952, Kolm, Tiitiincii, &
Fabozzi (2014) point out that one of the reasons for this has been
the computational challenges that have forever dogged Markowitz
portfolio selection since its introduction.

In the beginning it was not enough computing power nor
enough storage. Storage was involved because (M), a quadratic
programming problem, is not an ordinary quadratic programming
problem. In ordinary quadratic programs, only small percentages
of the objective function coefficients are nonzero, but in (M) it is
often the case that all coefficients are nonzero as this is what typ-
ically results when computing X from historical data. While stor-
age is no longer a problem, the density of X still causes (M) to be
among the most difficult of quadratic programs to solve.

In addition, there is the issue of solving (M) for all p e
[ Pmin- Pmax]- Due to the difficulties in doing this over a continu-
ous interval, it has been welcomed as satisfactory from early on
to solve (M) repetitively for a sufficiently large number of discrete
values of p coming from [Onin, Pmax] and the world has become
used to this. The idea is to solve (M) for enough values of p so that
after plotting the mean-variance combinations that result, nicely
dotted versions of the efficient frontier, such as commonly seen in
textbooks, are produced. However, with the computing power and
algorithmic advancements that had come along by year 2000, it
was then possible to compute well-dotted representations of the
efficient frontiers of dense covariance matrix mean-variance port-
folio selection problems with well up to 1000 securities in non-
prohibitive time.

One might think that this would be just what was needed so
that Markowitz portfolio selection would no longer be consigned
to the mostly smaller problems it had been limited to in the first
part of its existence. Unfortunately, this did not turn out to be the
case. It turned out that in overcoming the challenge of size, this
exposed two other challenges that had been laying low in small
problems as they did not cause trouble there, but they are ma-
jor challenges in larger problems. One is cardinality as discussed
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earlier. The other has to do with very small weights that can be
anticipated to show up in the efficient portfolios of large prob-
lems. Because of the overhead each security adds to the admin-
istration of a portfolio, investors almost universally only want to
hold a security in at least some buyin threshold amount or not
at all. Thus when a weight is smaller than its security’s threshold
amount, a situation that only becomes more prevalent the larger
the problem, this makes it frustrating on the part of an investor
to know what to do with it. If you round down, where do you
distribute the weight freed up? If you round up, where do you
get the extra weight from? With it not uncommon for more than
one such frustration to occur in a large-problem efficient portfolio
(Steuer, Hirschberger, & Deb, 2015), junctures can be easily reached
at which dealing with Markowitz portfolio selection can be more
trouble than it is worth.

Note the perverseness of the situation. Earlier, we couldn’t use
mean-variance portfolio selection on large problems because of
computer technology, but now after computer technology is no
longer a limitation, we can’t use mean-variance portfolio selection
on large problems because of cardinality and buyin threshold dif-
ficulties. Either way, we are blocked, with the situation only the
worse the larger the problem.

The resulting challenge is how to prevent solutions with not-
wanted cardinalities and security weights positive but below their
buyin thresholds from being computed in the first place. This is
accomplished by equipping (M) with (a) semi-continuous variables
by which either nothing or at least some threshold amount is to be
invested in a security and (b) a cardinality constraint. In this way,
if we can solve the problem with semi-continuous variables and
a cardinality constraint, we get the cardinalities we want and the
difficulty of insufficiently large weights plaguing efficient solutions
is eliminated.

In such a fashion, with semi-continuous variables and a cardi-
nality constraint, it is hard to imagine more realistic versions of
(M) for general use. Also, with a cardinality constraint, all port-
folios that make up a problem’s efficient frontier can be made to
possess the same cardinality, which is all but impossible with con-
tinuous variables. With semi-continuous variables and a cardinality
constraint integrated into (M), this gives us the following cardinal-
ity constrained mean-variance portfolio selection problem formu-
lation

min x” ¥ x (CC)

st. u'x>p
1'x=1

n
> vi=K
i1

Ly; < x; <Uy; foralli
yi€{0,1} for all i
where

(1) feasible region S of (CC) is specified by the last four lines of
the formulation,

(2) the x; variables are no longer continuous, but are now semi-
continuous,

(3) L is the buyin threshold and U is the upper bound on an x;
when x; # 0,

(4) the y; are binary variables used to implement both the semi-
continuous variable and cardinality constraint parts of the
problem,

(5) K is the cardinality of a portfolio (the number of positive x;-
values defining the portfolio), and

(6) it is implied that the formulation is to be solved repeti-
tively for a sufficiently dispersed and large number of p
from [omin, Pmax]-
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Unfortunately, cardinality constrained mean-variance portfolio
selection problems are NP-hard (Bienstock, 1996 and Gao & Li,
2013). With this and the runaway solution times that are so
often the case when working with NP-hard problems, this has
caused scores of researchers to pursue heuristics to develop ap-
proximations to the solutions of (CC) that couldn’'t be computed
exactly. Note how (CC) embraces the minimum transaction lot
problems studied in Mansini & Speranza (1999) and Lin & Liu
(2008).

Whereas in the approaches of the many researchers who have
addressed (CC) the strategy has been to take the original exact
problem and then apply heuristics to solve, in this paper the strat-
egy is to perturb the original problem and then apply exact proce-
dures to solve. By “perturbing” the original problem it is meant to
make adjustments to the correlation matrix of a problem’s ¥ co-
variance matrix to make it near positive definite or perhaps even
positive definite. Then the adjusted correlation matrix is used to
construct a re-constituted version of the original covariance ma-
trix (which is only slightly different from the original covariance
matrix) to be used in place of the original X in (CC). Not only en-
abling (CC) to run on state-of-the-art solvers, because the adjust-
ments are so small, the approach hardly affects solution accuracy
as we will see. In addition, the approach is easy to implement, it is
easy to understand, and it allows cardinality constrained problems
with up to at least 1000 securities to run in very rapid time.

The organization of the rest of this paper is as follows. In
Section 1.2, we review the literature on the variety of heuristics
that have been proposed for cardinality constrained mean-variance
portfolio selection problems. In Section 2 we describe the closest
correlation matrix covariance matrix approach of the paper and de-
scribe the random portfolio selection problem generator used to
generate the many test problems needed for the experiments of
this paper. In Section 3 experiments attesting to the smallness of
the perturbations and the accuracy of the method are presented,
and in Section 4 the results of our experiments in a production
environment are reported. In Section 5 we end the paper with con-
cluding remarks.

1.2. Literature review

Although interest in special methods for developing solutions to
the mean-variance cardinality constrained portfolio selection prob-
lem can be traced back to the late 1990s, research did not begin to
appear in volume on the subject until after the appearance of the
article by Chang, Meade, Beasley, & Sharaiha (2000). The signifi-
cance of that paper is that it showed in very clear terms the rele-
vance of the mean-variance cardinality constrained portfolio selec-
tion problem, its issues, and the potential of inexact methods (i.e.,
heuristics) to solve for the efficient frontier of such problems given
that state-of-the-art solvers can not be counted on to be effective
on such problems. Thus, the rush was on for who could develop
the best heuristic for solving the mean-variance cardinality con-
strained portfolio selection problem.

To not repeat what already has been done, it is pointed out
that two reviews of the literature on the mean-variance cardi-
nality constrained portfolio selection problem (CC) already ex-
ist. The first, contained in the article by Woodside-Oriakhi, Lu-
cas, & Beasley (2011), covers 22 articles published between the
time of the Chang et al. (2000) and 2010, grouped by type of
heuristic into three categories. The categories are: exact proce-
dure modification approaches (5 papers), single metaheuristic ap-
proaches (11 papers), and multiple metaheuristic approaches (6 pa-
pers). In the exact procedure modification category, the heuristics
are constructed out of exact method tools such as special terms
and cuts as for example in the papers of Shaw, Liu & Kopman
(2008) and Bertsimas & Shioda (2009). In the single metaheuris-
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tic category, the papers employ single heuristics such as simu-
lated annealing, neural networks, and multiobjective evolutionary
algorithms. Examples are found in the neural networks paper of
Fernandez & Gomez (2007) and in the multiobjective evolution-
ary paper by Branke, Scheckenbach, Stein, Deb, & Schmeck (2009).
In the multiple metaheuristic category, where the papers involve
two or more metaheuristics, sometimes in combination and other
times for use in comparing against one another, we have for ex-
ample Ehrgott, Klamroth, & Schwehm (2004) and Ruiz-Torrubiano
& Sudrez (2010) in which simulated annealing, tabu search, and
genetic algorithms are used.

The second review is contained in Kalayci, Ertenlice, Akyer, &
Aygoren (2017) and covers heuristics published between the time
of Woodside-Oriakhi et al. (2011) through 2015. In this review
are listed an additional 38 papers with 5 falling into the ex-
act procedure modification category in which Cesarone, Scozzari,
& Tardella (2013) and Cui, Zheng, Zhu, & Sun (2012) are exam-
ples; 24 falling into the single metaheuristic category in which
Sadjadi, Gharakhani, & Safari (2012) and Lwin, Qu, & Kendall
(2014) are examples; and 9 falling into the multiple metaheuris-
tic category in which Anagnostopoulos & Mamanis (2011) and
Baykasoglu, Yunusoglu, & Ozsoydan (2015) are examples. It is in-
teresting to note that out of the 24 in the single metaheuristic
category, 17 used particle swarm, ant colony, artificial bee colony,
and firefly optimization strategies (as in Deng & Lin, 2010; Deng,
Lin, & Lo, 2012; and Kalayci et al., 2017) in contrast to only one
swarm optimization heuristic (Cura, 2011) showing up in the first
review.

Since the Kalayci et al. (2017) review, another 13 articles pre-
senting heuristics of which we are aware have appeared such
as by Bertsimas & Cory-Wright (2022), Cesarone, Scozzari, &
Tardella (2015), and Juszczuk, Kaliszewski, Miroforidis and Pod-
kopaev (2022), Liagkouras & Metaxiotis (2018a,b) and Salehpoor
& Molla-Alizadeh-Zavardehi (2019) to name five. By the way,
Salehpoor & Molla-Alizadeh-Zavardehi (2019) also contains an ex-
cellent bibliography.

With all of the 73 papers alluded to above, and with a few of
them proposing more than one, this brings us to over 70 heuris-
tics that have be proposed. A problem with all of the heuristics
is that they involve intricate procedures that would require a spe-
cialist in any procedure in question to operate. Consequently, they
would not be an easy sell to Wall Street (that is, financial mar-
kets in general) due to the considerable amounts of often esoteric
detail that one would have to have knowledge about to operate.
Moreover, other than for only a few of the heuristics such as by
Cesarone et al. (2013) and Bertsimas & Cory-Wright (2022) that
have been subjected to considerable testing, the computational ex-
perience reported in support of the bulk of the heuristics has been
limited to only a handful of small test problems often from Beasley
(2000), so we don't yet know what to expect from them over the
long haul and on larger problems. In addition to all of this, run
times are not short and this would get in the way of them be-
ing used in practice. In summary, there is not enough standard,
straightforward, and familiar about them for one to feel that many
might be on the verge of being used in practice.

However, the approach of this paper is different. With the ap-
proach only involving minute changes being made to the covari-
ance matrix, and with that being easily carried out in Matlab, the
approach does not require a specialist to operate like the heuristics
just discussed. Actually, its simplicity is such that it would not be
beyond a portfolio manager to carry out the approach himself or
herself if it came down to it. Also, the approach would rank high
in being explainable to clients having any kind of interest in the
process. Furthermore, the speed at which the approach can be car-
ried out, the size of the problems that can be addressed, and the
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accuracy of the solutions generated is not matched by any of the
70+ heuristics.

To instill confidence in our approach, all meaningful aspects of
the approach have been subjected to extensive computational test-
ing to provide an understanding about what to expect from the
approach in practice as will follow shortly. But first, in the next
section, we algorithmically describe the approach.

2. The approach and test problem generator

While the driving force behind the 70+ heuristics recapped in
the previous section has been the NP-hardness of (CC) brought on
by the binary variables, it is not out of the question that other
things could be at play. For instance, in Cplex, if X is not of full
or near full rank, Cplex will most likely return the error message
“Covariance Matrix Not Convex” and not start. In using Gurobi, an-
other state-of-the-art solver (our favorite), one might get the mes-
sage “Objective Q not PSD”. In our analysis, it is not NP-hardness
that is the most serious cause of solvers like Cplex and Gurobi not
being able to solve instances of (CC). It is the degree to which X
is not of full rank that is the culprit. That is, with X usually 120
or less in rank when constructed from historical return data, suc-
cess in problems with more than a few percent more in securities
becomes hard to come by.

Thus, rather than NP-hardness, this has caused us to think in
the direction of the covariance matrix with our approach for en-
abling the solution of (CC). Under the prospect that a non-positive
definite covariance matrix can have its rank improved by mak-
ing small adjustments to its elements, we pursue an approach
for problems with non-positive definite covariance matrices that
endeavors to improve the rank of the covariance matrix without
changing the matrix much as follows.

We first take the problem’s non-positive definite covariance
matrix and decompose it into its standard deviation vector and its
correlation matrix. Then, using a routine drawn from the research
of Qi & Sun (2006), which in turn was inspired by research from
Higham (1988, 2002), we strive to compute the positive definite
correlation matrix that is as close as we are able to compute to the
correlation matrix of the original covariance matrix. (This is be-
cause the set of all positive definite correlation matrices is open.)
Then, by pre- and post-multiplying the computed correlation ma-
trix by the diagonal matrix along whose main diagonal is the stan-
dard deviation vector, we form a slightly different version of the
original covariance matrix that we call the closest correlation ma-
trix covariance matrix, whose rank should be much improved. With
this matrix used in place of the original covariance matrix, we take
(CC) to a state-of-the-art solver, which in this paper is Gurobi, for
solution. Of course, the solutions generated when using the closest
correlation matrix covariance matrix will not be precisely optimal,
but as we will see, they will be remarkably close. Step-by-step, the
closest correlation matrix covariance matrix routine is as follows.

(1) Let X be the starting covariance matrix.

(2) Compute its standard deviation vector and correlation ma-
trix Corr. This is done by means of cov2corr in Matlab.
Then form the diagonal matrix Std whose main diagonal is
the standard deviation vector.

Compute pdCorr where it is to be the positive definite cor-
relation matrix “closest” to Corr. This is done by invoking
the procedure of Qi & Sun (2006) in the form of the Matlab
executable CorNewtonl downloaded from the first author’s
website several years ago. By closest, it is meant in accor-
dance with the Frobenius norm. With the Frobenius norm
of a matrix being the square root of the sum of the squares
of all elements in the matrix, pdCorr is then the matrix X

—
w
~—
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Table 1

Parameter settings used by the random portfolio selection problem generator to
generate the covariance matrices X and expected return vectors g used in the
problems of the experiments of this paper.

Parameter Quantity Value

¥ main diagonal elements mean 0.00554
stdev 0.00667

Y off-diagonal elements mean 0.00124
stdev 0.00115

JL-vector elements mean 0.00899
stdev 0.00938

obtained by solving

o1
min 5 ||Corr — X||?

st. xj=1 i=1...n

Xesn (1)

where S is the set of all symmetric n x n positive definite
matrices.

(4) Upon computing rSig = Stdx pdCorr * Std, rSig is the re-
computed covariance matrix, called the closest correlation
matrix covariance matrix in this paper.

(5) With rSig used in place of X, (CC) is sent to a state-of-the-
art solver such as Cplex or Gurobi for solution.

Since ST, the set of all symmetric n x n positive definite ma-
trices, is an open set, program (1) is only run until a tolerance is
satisfied such as 1.0e-4 (default value in CorNewtonl). While pd-
Corr is to be positive definite, there is no exact guarantee because
of the tolerance. But in our experiments, we have found that rSig
normally computes to over 95% of full rank as shown in the next
section, and that has been enough to enable the computation of all
100-point efficient frontiers of all of the problems of this paper.

Because there are not enough real-world portfolio selection
problems to supply the test problem needs of this paper, we call
upon a random portfolio selection problem generator. The ran-
dom problem generator employed is patterned after the random
portfolio selection problem generator used in Hirschberger, Qi, &
Steuer (2010). In accordance with this, the covariance matrices X
of the problems generated are produced by the routine described
in Hirschberger, Qi, & Steuer (2007).

For realism in the generation of the ¥ and w in the problems
generated for this paper, the random problem generator was pa-
rameterized with data drawn from the stocks that were in the
S&P500 over the 5-year period January 1, 2015 through December
31, 2019, similar to as was done in Steuer & Utz (2022) but with
different seeds. These parameter values are as given in Table 1.

Using these parameter values, we have in Table 2 the steps of
the random problem generator for generating the problem situa-
tions needed in this paper. With regard to Step 1, in this paper we
experiment with problem sizes of 250, 500, 750 and 1000 securi-
ties to show how the approach works in problems of these sizes.
Note that in the random problem generator, we create two ver-
sions of each instance of (CC) generated. In the first version, to
generate the covariance matrices X in accordance with the S&P500
data, the main diagonal elements of the covariance matrices are
designed to average 0.00554 with a standard deviation of 0.00667,
and the off-diagonal elements of the covariance matrices are de-
signed to average 0.00124 with a standard deviation of 0.00115.
This is done in Step 2. To generate the expected return vectors g in
accordance with the S&P500 data, their elements are designed to
average 0.00899 with a standard deviation of 0.00938. This is done
in Step 3. After this in Step 4, values for L, U and K are supplied to
complete the specification of the instance of (CC) generated.

That completes the first version.
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To create the second version of the instance of (CC) just gener-
ated, we compute X’s closest correlation matrix covariance matrix
rSig in Step 5, Then in Step 6, instead of X, we use rSig as the co-
variance matrix in the second version of the instance of (CC). This
is done so that the effectiveness of the closest correlation matrix
covariance matrix approach can be tested problem by problem.

CPU times per problem for carrying out the construction of
rSig from its ¥ using Steps (2) through (4) of the closest correla-
tion matrix covariance matrix routine specified earlier in the sec-
tion are given in Table 3. For instance, the time taken to convert
a covariance matrix X of size 750 to its rSig shows an average of
7.14 seconds.?

3. Physical and operational closeness of the rSig

In this section we show how close a problem’s closest corre-
lation matrix covariance matrix rSig is to its original covariance
matrix ¥ physically, and how close the results of using rSig vs.
¥ test out in an operational setting. Then we discuss the differ-
ences between the ranks of rSig and X followed by some com-
ments about the use of state-of-the-art solvers Cplex and Gurobi.
Consider Table 4.

The first four rows show how close the elements of the clos-
est correlation matrix covariance matrices rSig are to their cor-
responding elements in their randomly generated ¥’s when com-
puted by the approach. On average, in rows 1 and 2, the numbers
show that corresponding diagonal elements in the two types of
covariance matrices only begin differing from one another in the
seventh place to the right of the decimal point, and on average, in
rows 3 and 4, the numbers show that corresponding off-diagonal
elements only begin differing from one another in the eighth place
to the right of the decimal point. In this way, with the differences
very small, the rSig are very close physically to their X, with the
relationship holding steady across covariance matrix sizes.

In rows 5 to 7, we show the results of testing the ¥ and
their rSig in an operational fashion. We do this by using the X
and rSig to compute their regular (i.e., continuous-variable) ef-
ficient frontiers. The efficient frontiers providing rows 5 and 6
were obtained by running (CC) with L=0, U=0.03 (a reasonable
value), and the cardinality constraint dropped. Known as early as
Markowitz (1956), the obtained efficient frontiers are piecewise
parabolic. That is, each consists of a connected string of parabolic
line segments. In our experiments, the mean number of parabolic
line segments making up the continuous-variable efficient frontiers
when run with ¥ range from 184.16 to 269.12 as seen in row 5.
Row 6 shows the degree to which the number of parabolic line
segments can vary from one problem to the next.

With regard to row 7, what the 5-tuples mean is as fol-
lows. Over the experiments, only five types of discrepancies
were observed between the two continuous-variable efficient fron-
tiers, that is, when the rSig efficient frontiers had 4 fewer, 2
fewer, 1 fewer, 1 more, and 2 more parabolic line segments
than their corresponding X efficient frontiers. This is what the
(—4,-2,-1,1,2)-tuple is all about. In this way, the (0,2,0,0,0) in
the covariance matrix size 750 column means that out of the 25
covariance matrices of this size tested, 23 had identical numbers of
parabolic line segments with only two having discrepancies, both
with the rSig efficient frontier having 2 fewer parabolic line seg-
ments. In this way, looking at the other 5-tuples, the efficient fron-
tiers produced by the rSig’s of the approach are very close in this
sense operationally to the efficient frontiers produced by their X’s.

With all of the covariance matrices produced by the random
problem generator having a rank of 23, row 9 shows the ranks to

2 All of the computational work in this paper was run on an HP Z2 Tower G5
Desktop with 32GB of RAM at the University of Georgia.
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Table 2
Steps for generating two versions of randomly generated instances of (CC), one with X as its covariance matrix, and
the other with X's closest correlation matrix covariance matrix rSig as its covariance matrix.

. Input the portfolio selection problem’s size n.

. In accordance with the first four parameters of Table 1, randomly generate covariance matrix X.

. In accordance with the fifth and sixth parameters of Table 1, randomly generate expected return vector p.
. Equip instance of (CC) with X, u, and values for L, U and K.

. Employing the approach of this paper, compute X's closest correlation matrix covariance matrix rSig.

. Equip a second instance of (CC) with all the same except for rSig replacing X.

DU W=

Table 3
Average times (in seconds) to convert a covariance matrix to its closest correlation matrix covariance matrix counterpart
using the Matlab routine of CorNewtonl by Qi & Sun (2006). Sample size 100 for each covariance matrix size.

250
0.75

500
3.18

750
7.14

1000
1231

Covariance matrix size
Conversion time (secs)

Table 4

In the first 4 rows, corresponding elements between rSig and X are compared. In terms of parabolic line segments,
rows 5 to 7 show that there is hardly any difference between the continuous-variable efficient frontiers when run with
Y vs. rSig. In rows 8 and 9, the differences in rank between the originally generated X¥’s and their rSig’s are shown.
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Sample size 25 for each covariance matrix size.

row Covariance matrix size 250 500 750 1000

1 AveDiagElemDiff 0.000001302 0.000001370 0.000001394 0.000001408
2 AveDiagElem%Diff 0.0245% 0.0258% 0.0263% 0.0266%

3 AveOffDiagElemDiff 0.000000544 0.000000569 0.000000574 0.000000578
4 AveOffDiagElem%Diff 0.2077% 0.3706% 0.4787% 0.4267%

5 MeanNumParabolicSegs 184.16 221.60 237.77 269.12

6 StdDevNumParabolicSegs 16.52 23.83 17.97 20.82

7 Discrepancies (-4, -2, -1,1,2) (0,1,0,1,3) (0,0,2,1,3) (0,2,0,0,0) (3,3,0,0,4)

8 AveRank(X, 0.0000005) 23 23 23 23

9 AveRank(rSig, 0.0000005) 244.64 488.80 731.32 974.20

Table 5

By size, the percentages of randomly generated X’s that cause Gurobi to respond
with the message “Objective Q not PSD”. Sample size 500 for each covariance ma-
trix size.

250
5.4%

500
5.6%

750
7.4%

1000
8.0%

Covariance matrix size
Gurobi Q not PSD percentage

which they have been raised by the closest correlation matrix co-
variance matrix approach of the paper. That is, they were all trans-
formed into rSig’s with ranks averaging over 97.4% of full rank.?

We now need to talk about Cplex and Gurobi. With Cplex hav-
ing been introduced in 1988 and Gurobi only in 2008, Cplex is the
best known and most widely used. Reflecting this, in the papers of
the 70+ heuristics, whenever a reference is made to a state-of-the-
art solver, it has always been to Cplex. But now there is Gurobi.
While many users have a lot invested in Cplex and would have no
interest in changing, we have found Gurobi to have advantages in
cardinality constrained mean-variance portfolio optimization. The
situation is this. Because of the lowness of the ranks of X rel-
ative to their n, Cplex is not able to solve any of the randomly
generated problems of this paper. But when equipped with rSig’s
as computed by the approach, they all run. However, with Gurobi,
most problems run with just X, while those that do not run all run
when (CC) is equipped with rSig.

Testing how often randomly generated covariance matrices (all
of which do not run on Cplex) don’t run on Gurobi either yields
Table 5. For instance, over a sample of 500 randomly generated
covariance matrices with 750 securities, Gurobi only bounced 37
back with the message “Objective Q not PSD” and refused to start.
Note how the percentages in the table only gradually increase with
problem size. But by applying the approach, i.e., by computing the

3 As assessed by the rank function in Matlab with tolerance 0.0000005.
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problem’s rSig and then re-running, solutions were obtained to all
(CC) in the same high-speed fashion as with the problems Gurobi
had no problem solving in the first place.

In Table 6 we take another look at the operational closeness of
the two covariance matrices. In the tests of this table, we com-
pare the minimum variances achieved when using the X as op-
posed to when using their rSig. This is done by solving (CC) with
its uTx > p constraint deleted for the 16 different (problem size,
K, L,U) combinations indicated. In the table, the avminVar are the
average minimum variances of the problems whose covariance ma-
trix is X, and the avAbsDif show the average absolute differences
between the minimum variances of problems solved with X as the
covariance matrix and those of the same problems but solved with
rSig as the covariance matrix. Note how small the avAbsDif are rel-
ative to their avminVar, showing once again how very close oper-
ationally the rSig are to their X.

4. Experiments

In Table 7, for 10 different cardinalities K and buyin thresholds
and upper bounds appropriate to these K-values, we report on ex-
periments for computing 100-point cardinality constrained mean-
variance efficient frontiers for problems of sizes 250, 500, 750 and
1000 securities. In rows 4 and 5 of each panel are the means and
standard deviations of the Inner run times experienced where In-
ner run time is Gurobi 9.5 Runtime as Gurobi was the solver ap-
plied. In row 8 of each panel are the means of the Outer run times
experienced where Outer run time is Inner run time plus the time
to make rSig and all other overhead involved in the 100-point ef-
ficient frontier construction process. For the 100 points of each
cardinality constrained efficient frontier, 100 optimizations were
conducted (one for each of the 100 equally-spaced p-values taken
from the problem’s [pnin, Pmax]) With the indexing such that op-
timization 1 starts with p.;, and optimization 100 finishes with

Pmax-
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Table 6
Statistics showing that the use of rSig’s has virtually no effect on solution accuracy. Sample size 25 for each (problem size, K, L, U) combination.
K 10 20 40 70
[L, U] [0.05,0.20] [0.03,0.10] [0.02,0.06] [0.01,0.03]
250 avminVar 0.000166967 0.000195995 0.000270676 0.000347326
avAbsDif 0.000000011 0.000000043 0.000000220 0.000001039
500 avminVar 0.000112421 0.000132217 0.000182528 0.000234018
avAbsDif 0.000000005 0.000000139 0.000000494 0.000001685
750 avminVar 0.000089572 0.000104147 0.000145572 0.000185384
avAbsDif 0.000000005 0.000000172 0.000000895 0.000002289
1000 avminVar 0.000079270 0.000090526 0.000124956 0.000160779
avAbsDif 0.000000005 0.000000160 0.000001100 0.000001572
Table 7

Run times (in seconds) and other statistics for computing 250, 500, 750 and 1000-security, 100-point cardinality constrained mean-variance efficient frontiers for different

values of K. Sample size 25 for each of the forty (n, K, U, L) combinations in the panels.

Panel A n =250 pts =100

1 K 3 5 10 15 20 30 40 70 100 150
2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03
3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003
4 MeanlnnerRuntime 21.21 10.98 717 7.79 7.43 6.21 6.07 3.36 3.74 4.03
5 StDevinnerRuntime 7.67 4.21 9.73 0.57 0.65 0.59 8.96 0.28 0.38 0.42
6 AvOptMaxIdx 25.92 27.16 41.92 37.32 38.16 48.96 64.00 64.40 72.92 76.96
7 OptMaxToAve 2.08 2.04 1.78 1.79 1.83 1.84 9.09 2.01 1.76 1.57
8 MeanOuterRuntime 22.07 12.65 8.77 9.40 9.03 7.85 7.61 4.86 5.37 5.66
Panel B n =500 pts =100

1 K 3 5 10 15 20 30 40 70 100 150
2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03
3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003
4 MeanInnerRuntime 89.36 41.30 27.79 29.13 26.61 22.48 13.21 12.24 14.50 17.64
5 StDevinnerRuntime 40.22 11.48 2.73 2.95 2.28 7.52 1.07 1.16 1.74 1.84
6 AvOptMaxIdx 21.76 32.28 41.60 41.48 49.84 55.60 64.92 64.12 59.00 43.60
7 OptMaxToAve 2.84 1.99 1.66 2.13 1.69 4.44 2.50 2.26 2.09 1.91
8 MeanOuterRuntime 95.68 50.20 36.56 37.72 35.13 30.99 21.63 20.68 22.97 26.14
Panel C n =750 pts = 100

1 K 3 5 10 15 20 30 40 70 100 150
2 u 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03
3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003
4 MeanInnerRuntime 382.05 88.74 66.51 70.08 60.13 48.07 29.82 26.21 31.39 37.09
5 StDevinnerRuntime 983.86 17.40 7.19 5.91 7.18 5.33 2.30 2.19 3.07 2.93
6 AvOptMaxIdx 14.92 18.40 31.08 43.04 52.28 75.68 63.32 66.60 61.80 60.36
7 OptMaxToAve 5.44 4.51 1.73 1.62 1.77 2.11 2.68 2.52 2.31 2.15
8 MeanOuterRuntime 400.56 101.28 78.53 82.21 72.00 59.92 41.43 37.92 39.16 49.00
Panel D n=1000 pts = 100

1 K 3 5 10 15 20 30 40 70 100 150
2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03
3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003
4 MeanlnnerRuntime 474.82 187.13 120.16 117.71 101.09 77.38 45.28 43.58 50.70 60.49
5 StDevinnerRuntime 266.11 78.05 10.86 10.86 8.24 6.54 3.53 2.73 4,02 421
6 AvOptMaxIdx 21.72 22.92 24.28 35.68 47.20 66.32 67.16 51.52 53.88 51.96
7 OptMaxToAve 4.74 3.07 1.66 1.68 1.83 2.21 3.17 243 2.30 2.32
8 MeanOuterRuntime 504.94 204.89 152.64 149.36 133.24 109.31 76.64 74.99 83.74 93.44

Whether looking at Inner or Outer run times, the times facil-
itated by the approach for whole cardinality constrained efficient
frontiers are remarkably small, being in the single digits for most
of Panel A, in the double digits for almost all of Panels B and C,
and only in the triple digits in Panel C for K <5 and in panel D for
K < 30. Illustrating, mean Inner run time for n = 250 when K=100
is 3.74 seconds, mean Inner run time for n = 500 when K=40 is
13.21 seconds, and mean Inner run time for n=1000 when K=5
is 187.13 seconds. As for cardinality constrained efficient frontier
run times being at their longest, say when K <30, this is consis-
tent with what the progenitors of the 70+ heuristics have reported,
that is, that the longest run times are with the smallest values of
K. However, even at their longest, none of these run times are long
at all.

Note how Inner and Outer run times decrease with increased
cardinality until they bottom out for all problem sizes at K=70,
after which they begin a gradual rise. For instance, mean Outer
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run time when n =1000 bottoms out at K=70 at 74.99 seconds. It
seems logical that this would be due to the portfolios making up
the continuous-variable efficient frontiers of the problems having
cardinalities that place the least amount of stress on the cardinality
constraint in (CC) when set to 70. But since there could be other
explanations, this is something that needs to be researched further
before more is said.

With regard to rows 6 and 7 in the panels, consider the opti-
mizations that have the longest Inner run times out of the 100 of
each cardinality constrained efficient frontier. AvOptMaxIdx is then
the average of the indices of these optimizations over the 25 prob-
lems in the sample for each (n, K, U, L) combination in the panels.
OptMaxToAve is then for each (n, K,U, L) combination the average
of the ratios of a problem’s longest Inner run time to the mean
of the Inner run times of the problem’s other 99 optimizations.
We include these two rows because of a comment in Bertsimas
& Cory-Wright (2022) about the optimizations forming the lower
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Fig. 1. Using the 100 equally-spaced p-values from the problem’s interval, at the top (a) is the K = 10, 100-point cardinality constrained efficient frontier of a 250-security
problem, and at the bottom (b) is a plot of the Inner run times of the 100 optimizations used to construct it.

part of the efficient frontier likely taking the longest. While we do
not see this across the board, this effect, however, is observed in
all four of our panels for K <20.

To illustrate, let us first consider Fig. 1(a). In this figure we
have the K=10, 100-point cardinality constrained efficient frontier
of a 250-security problem whose U = 0.30 and L = 0.05. In prob-
lems of the sizes of this paper, it is to be noted that their car-
dinality constrained efficient frontiers, apart from a little granu-
lar roughness here and there and perhaps a small gap in the near
vertical lower part of the frontier, follow very closely the sweep-
ing nature of the efficient frontiers that we have long been fa-
miliar with in continuous-variable portfolio optimization. This is
in contrast to the irregularly shaped cardinality constrained effi-
cient frontiers shown, for example, in Chang et al. (2000), Jobst,
Horniman, Lucas, & Mitra (2001), and Woodside-Oriakhi et al.

(2011) which can only occur when both K and n are small. But
as soon as K and n take on larger values as they would in more
realistic situations, their cardinality constrained efficient frontiers
quickly morph into shapes with which we are familiar with all but
small traces of the irregularities seen in small problems long left
behind.

In Fig. 1(b) we have the Inner run times of the 100 optimiza-
tions used to construct the frontier. In the plot the greatest Inner
run time is 1.837 times the average time of the other 99 optimiza-
tions. With the greatest run time occurring on optimization 39,
this is consistent with the AvOptMaxIdx entry in the K=10 col-
umn of Panel A in Table 7. However, in our experiments, the phe-
nomenon of longest optimization run times gradually shifts to the
upper portions of the efficient frontiers as K increases as tabulated
in row 6 of all panels.
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5. Conclusions

What we have been able to develop is a simple, straightforward,
and easy to implement approach that enables one to solve cardi-
nality constrained mean-variance portfolio selection problems and
deliver useable portfolio selection solutions to problems with up
to 1000 securities. Our finding is that it is not the NP-hard nature
of (CC), but the covariance matrix, that is the stumbling block. For-
tunately, troubles with the covariance matrix can be taken care of
by making only minute adjustments to it. With the adjustments to
the covariance matrix having virtually no effect on solution accu-
racy, the complexities thought to be involved in solving cardinality
constrained portfolio problems are avoided. In this way, with the
cardinality constrained portfolio problem now so easily solved, ef-
ficient frontiers consisting of many points representing them can
be computed in problems with up to 1000 securities in times not
believed possible before.

In summary, the approach paves ground for a new era in port-
folio selection. On Wall Street, there is seldom a problem with-
out buyin thresholds and cardinality targets. Instead of having to
compromise with continuous variables, such problems can now be
solved in a clear, concise and rapid fashion.
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