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In this paper, we demonstrate a completely new approach for computing cardinality constrained mean- 

variance efficient frontiers. By cardinality constrained, it is meant that if there is to be investment in a 

security, it is to be of at least some minimum amount (a buyin threshold), and that there is also a specifi- 

cation on the number of securities to be held in a portfolio (called a cardinality constraint). Whereas the 

usual strategy, as such problems are NP -hard, is to take the original exact problem and apply heuristics 

to solve, in this paper the strategy is to perturb the original problem and then apply exact procedures 

to solve. The advantages of the approach are that the perturbations are tiny, they are only applied to 

the problem’s correlation matrix, and they allow for the accurate computation of cardinality constrained 

efficient frontiers in problems with up to at least 10 0 0 securities in remarkably little time. Moreover, the 

simplicity of the approach is such that it can be inserted into existing portfolio management systems 

without requiring any re-training beyond what a typical portfolio analyst would already know. 1 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

We start by overviewing the problem of portfolio selection and 

arkowitz’s mean-variance procedure for solving it to show how 

nterest in cardinality constrained versions of the basic problem 

as evolved within this framework. By cardinality constrained, it 

s meant that if there is to be investment in a security, it is to be

f at least some minimum amount (a buyin threshold), and that 

here is also a restriction on the number of securities to be held 

n a portfolio (called a cardinality constraint). Despite the fact that 

arkowitz portfolio selection has been around for over 70 years, it 

as been in only the last third of this period that interest in car- 

inality constrained versions of the mean-variance approach has 

ome to the forefront. 

Why it did not start earlier was because it took until this time 

or the dream of being able to solve mean-variance portfolio se- 

ection problems of almost any size to be achieved – only to find 

ut that in large problems, virtually all generated solutions are un- 

sable. What is meant by this? Assume an investor is trying to 
∗ Corresponding author. 

E-mail addresses: rsteuer@uga.edu (R.E. Steuer), yorkche@nankai.edu.cn (Y. Qi), 

aximilian.wimmer@ur.de (M. Wimmer) . 
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1

k

r

ttps://doi.org/10.1016/j.ejor.2023.08.026 

377-2217/© 2023 Elsevier B.V. All rights reserved. 
uild a portfolio containing 20 securities. With the solutions pro- 

uced by Markowitz’s mean-variance approach containing, say, 35 

o 40 securities (typical numbers), the solutions are not useful to 

he investor. As another example, suppose you are the manager of 

 mutual fund that traditionally contains 100 securities. Again, so- 

utions with cardinalities in the range of 35 to 40 are of no use 

o you when in need of a number like 100 or so. Even if you were

ooking for a solution in the 35 to 40 range, it is highly likely there

ould be buyin threshold violations (more on this as we go) which 

ouldn’t satisfy your situation either. 

Indeed, cardinality constrained formulations of the mean- 

ariance problem can be constructed whose solutions would be 

ble to provide cardinality constrained users with what they would 

e looking for, if it were only possible to solve the problem, as such 

roblems have eluded solution over the years. However, the con- 

ribution of this paper is the approach, the likes of which are dif- 

erent from any other approach, that enables the solution of cardi- 

ality constrained mean-variance portfolio selection problems with 

p to at least 10 0 0 securities in size, in remarkably little time. 

.1. Background 

As for history, while the idea of portfolio selection is widely 

nown, that term and others relating to it that we take for granted 

eally only go back to 1952. That was the year in which the 

https://doi.org/10.1016/j.ejor.2023.08.026
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aper by Markowitz (1952) was published for which he won the 

obel Prize. That paper has been of such impact that it can be 

iewed as dividing finance into two parts, with the first being be- 

ore Markowitz (1952) , and the second part being after. 

It takes effort to imagine the field of investments prior to 1952 

s there was no notion of an efficient portfolio, there was no no- 

ion of an efficient frontier, risk had not been settled upon, and di- 

ersification was for all practical purposes not putting all of one’s 

ggs in the same basket. The focus of the era was on identify- 

ng good individual stocks to buy. But how to do this and know 

ow much to invest in each was unclear as the only techniques 

vailable were mostly drawn from experience and common sense 

such as in Graham & Dodd, 1934 ) as there was, beyond discounted 

ashflows, no formal theory of investments at the time. More on 

hat investing was like before Markowitz can be found in Beattie, 

rown, & Kvilhaug (2022) and Cifuentes (2022) . 

But all changed with Markowitz (1952) . By introducing the con- 

ept of an efficient portfolio, Markowitz was able to tie together 

he best of what had been out there into an overarching the- 

ry expressible within the structure of a mathematical program- 

ing problem. The features of that paper are (a) its optimization 

odel (almost certainly the most written about optimization prob- 

em of all time) by which efficient solutions are generated and (b) 

ts decision-making prescription by which investors are to inter- 

ct with the efficient solutions generated to identify one’s optimal 

ortfolio. As for (a), the optimization model is 

min x 

T � x ( M ) 

s.t. μT x ≥ ρ ρ ∈ [ ρmin , ρmax ] 

x ∈ S 

here 

(1) S is the feasible region defined by x i ≥ 0 for all i along with 

1 T x = 1 , and at the discretion of the investor, other linear 

constraints as proposed in Markowitz (1956) , 

(2) n is the number of securities eligible for use in constructing 

a portfolio, 

(3) x ∈ S is a portfolio whose components x i (often called 

weights) are the proportions of capital invested in the n dif- 

ferent securities, 

(4) μ ∈ R 

n is the vector of the individual security expected re- 

turns, 

(5) � is the n × n covariance matrix of security returns whose 

elements σi j specify the covariances between the returns of 

securities i and j, 

(6) x T �x is the matrix expression of portfolio return variance, 

(7) μT x is expected portfolio return, and 

(8) (M) is to be solved for all ρ in the interval indicated where 

ρmin is the value of expected portfolio return at the solution 

of minimum variance and ρmax the value of expected port- 

folio return at the solution of maximum return. 

This is the mean-variance model of Markowitz portfolio selec- 

ion, where “mean” is expected portfolio return μT x and “variance”

s short for portfolio return variance x T �x , the quantity that mea- 

ures risk. Note how the model’s emphasis is on portfolios rather 

han on individual securities as was earlier the case. 

With a portfolio x ∈ S being efficient if and only if there ex- 

sts no other portfolio whose risk is better without its expected 

eturn being worse (or whose expected return is better without 

ts risk being worse), this means that when (M) is solved for all 

∈ [ ρmin , ρmax ] , the set of all efficient portfolios is returned. The

mportance of this set, the efficient set , is that it contains, and only 

ontains, all portfolios that could be optimal for an investor. This 

eans that the investor’s most preferred portfolio in the set is the 

nvestor’s optimal portfolio. But since efficient sets typically con- 

ain many points, it would be nice if some kind of assistance were 
629 
vailable. This is where (b), the decision-making part of Markowitz 

1952) , comes in. Based upon the efficient frontier , which is the 

urve that results from plotting the mean-variance combinations of 

ll portfolios in the efficient set, the usefulness of the curve is that 

y selecting the most preferred mean-variance combination on it, 

he investor will then have, after taking its inverse image, his or 

er optimal portfolio. 

This provides an accommodating environment for an investor. 

t allows different investors to have different optimal solutions de- 

ending upon where along the efficient frontier their most pre- 

erred mean-variance combination lies. Furthermore, the environ- 

ent allows investors, when picking their most preferred mean- 

ariance combination, to see all other candidates for optimality at 

he same time. Thus, when picking one’s most preferred point, the 

ecision maker is aware that this is a global choice. 

While computers didn’t have the slightest chance of being able 

o solve even a toy version of (M) in 1952, this didn’t stop the pa-

er’s theoretical content from having effect. In contrast to before, 

arkowitz (1952) presented a concise and insightful view of what 

he portfolio selection problem is, how it is to be solved ideally, 

nd how the solution process can be tempered to the needs of dif- 

erent investors. Moreover, due to the material’s teachability, this 

as enabled universities for many years now to have taught the 

ssentials of Markowitz portfolio selection to large numbers of stu- 

ents around the world without getting the students caught up in 

he model’s implementation difficulties. 

This is fortunate as there have always been implementation dif- 

culties with the model of Markowitz portfolio selection. Despite 

he impact of Markowitz (1952) on finance, there has always been 

he question that if Markowitz portfolio selection is so important, 

ow come its model is not used more in practice? In their review 

f the 60 years of portfolio selection since 1952, Kolm, Tütüncü, & 

abozzi (2014) point out that one of the reasons for this has been 

he computational challenges that have forever dogged Markowitz 

ortfolio selection since its introduction. 

In the beginning it was not enough computing power nor 

nough storage. Storage was involved because (M), a quadratic 

rogramming problem, is not an ordinary quadratic programming 

roblem. In ordinary quadratic programs, only small percentages 

f the objective function coefficients are nonzero, but in (M) it is 

ften the case that all coefficients are nonzero as this is what typ- 

cally results when computing � from historical data. While stor- 

ge is no longer a problem, the density of � still causes (M) to be 

mong the most difficult of quadratic programs to solve. 

In addition, there is the issue of solving (M) for all ρ ∈ 

 ρmin , ρmax ] . Due to the difficulties in doing this over a continu- 

us interval, it has been welcomed as satisfactory from early on 

o solve (M) repetitively for a sufficiently large number of discrete 

alues of ρ coming from [ ρmin , ρmax ] and the world has become 

sed to this. The idea is to solve (M) for enough values of ρ so that

fter plotting the mean-variance combinations that result, nicely 

otted versions of the efficient frontier, such as commonly seen in 

extbooks, are produced. However, with the computing power and 

lgorithmic advancements that had come along by year 20 0 0, it 

as then possible to compute well-dotted representations of the 

fficient frontiers of dense covariance matrix mean-variance port- 

olio selection problems with well up to 10 0 0 securities in non- 

rohibitive time. 

One might think that this would be just what was needed so 

hat Markowitz portfolio selection would no longer be consigned 

o the mostly smaller problems it had been limited to in the first 

art of its existence. Unfortunately, this did not turn out to be the 

ase. It turned out that in overcoming the challenge of size, this 

xposed two other challenges that had been laying low in small 

roblems as they did not cause trouble there, but they are ma- 

or challenges in larger problems. One is cardinality as discussed 
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arlier. The other has to do with very small weights that can be 

nticipated to show up in the efficient portfolios of large prob- 

ems. Because of the overhead each security adds to the admin- 

stration of a portfolio, investors almost universally only want to 

old a security in at least some buyin threshold amount or not 

t all. Thus when a weight is smaller than its security’s threshold 

mount, a situation that only becomes more prevalent the larger 

he problem, this makes it frustrating on the part of an investor 

o know what to do with it. If you round down, where do you 

istribute the weight freed up? If you round up, where do you 

et the extra weight from? With it not uncommon for more than 

ne such frustration to occur in a large-problem efficient portfolio 

 Steuer, Hirschberger, & Deb, 2015 ), junctures can be easily reached 

t which dealing with Markowitz portfolio selection can be more 

rouble than it is worth. 

Note the perverseness of the situation. Earlier, we couldn’t use 

ean-variance portfolio selection on large problems because of 

omputer technology, but now after computer technology is no 

onger a limitation, we can’t use mean-variance portfolio selection 

n large problems because of cardinality and buyin threshold dif- 

culties. Either way, we are blocked, with the situation only the 

orse the larger the problem. 

The resulting challenge is how to prevent solutions with not- 

anted cardinalities and security weights positive but below their 

uyin thresholds from being computed in the first place. This is 

ccomplished by equipping (M) with (a) semi-continuous variables 

y which either nothing or at least some threshold amount is to be 

nvested in a security and (b) a cardinality constraint. In this way, 

f we can solve the problem with semi-continuous variables and 

 cardinality constraint, we get the cardinalities we want and the 

ifficulty of insufficiently large weights plaguing efficient solutions 

s eliminated. 

In such a fashion, with semi-continuous variables and a cardi- 

ality constraint, it is hard to imagine more realistic versions of 

M) for general use. Also, with a cardinality constraint, all port- 

olios that make up a problem’s efficient frontier can be made to 

ossess the same cardinality, which is all but impossible with con- 

inuous variables. With semi-continuous variables and a cardinality 

onstraint integrated into (M), this gives us the following cardinal- 

ty constrained mean-variance portfolio selection problem formu- 

ation 

min x 

T � x (CC) 

s.t. μT x ≥ ρ

1 

T x = 1 

n ∑ 

i =1 

y i = K 

Ly i ≤ x i ≤ Uy i for all i 

y i ∈ { 0 , 1 } for all i 

here 

(1) feasible region S of (CC) is specified by the last four lines of 

the formulation, 

(2) the x i variables are no longer continuous, but are now semi- 

continuous, 

(3) L is the buyin threshold and U is the upper bound on an x i 
when x i � = 0 , 

(4) the y i are binary variables used to implement both the semi- 

continuous variable and cardinality constraint parts of the 

problem, 

(5) K is the cardinality of a portfolio (the number of positive x i - 

values defining the portfolio), and 

(6) it is implied that the formulation is to be solved repeti- 

tively for a sufficiently dispersed and large number of ρ

from [ ρmin , ρmax ] . (

630 
Unfortunately, cardinality constrained mean-variance portfolio 

election problems are NP -hard ( Bienstock, 1996 and Gao & Li, 

013 ). With this and the runaway solution times that are so 

ften the case when working with NP -hard problems, this has 

aused scores of researchers to pursue heuristics to develop ap- 

roximations to the solutions of (CC) that couldn’t be computed 

xactly. Note how (CC) embraces the minimum transaction lot 

roblems studied in Mansini & Speranza (1999) and Lin & Liu 

2008) . 

Whereas in the approaches of the many researchers who have 

ddressed (CC) the strategy has been to take the original exact 

roblem and then apply heuristics to solve, in this paper the strat- 

gy is to perturb the original problem and then apply exact proce- 

ures to solve. By “perturbing” the original problem it is meant to 

ake adjustments to the correlation matrix of a problem’s � co- 

ariance matrix to make it near positive definite or perhaps even 

ositive definite. Then the adjusted correlation matrix is used to 

onstruct a re-constituted version of the original covariance ma- 

rix (which is only slightly different from the original covariance 

atrix) to be used in place of the original � in (CC) . Not only en-

bling (CC) to run on state-of-the-art solvers, because the adjust- 

ents are so small, the approach hardly affects solution accuracy 

s we will see. In addition, the approach is easy to implement, it is 

asy to understand, and it allows cardinality constrained problems 

ith up to at least 10 0 0 securities to run in very rapid time. 

The organization of the rest of this paper is as follows. In 

ection 1.2 , we review the literature on the variety of heuristics 

hat have been proposed for cardinality constrained mean-variance 

ortfolio selection problems. In Section 2 we describe the closest 

orrelation matrix covariance matrix approach of the paper and de- 

cribe the random portfolio selection problem generator used to 

enerate the many test problems needed for the experiments of 

his paper. In Section 3 experiments attesting to the smallness of 

he perturbations and the accuracy of the method are presented, 

nd in Section 4 the results of our experiments in a production 

nvironment are reported. In Section 5 we end the paper with con- 

luding remarks. 

.2. Literature review 

Although interest in special methods for developing solutions to 

he mean-variance cardinality constrained portfolio selection prob- 

em can be traced back to the late 1990s, research did not begin to 

ppear in volume on the subject until after the appearance of the 

rticle by Chang, Meade, Beasley, & Sharaiha (20 0 0) . The signifi- 

ance of that paper is that it showed in very clear terms the rele- 

ance of the mean-variance cardinality constrained portfolio selec- 

ion problem, its issues, and the potential of inexact methods (i.e., 

euristics) to solve for the efficient frontier of such problems given 

hat state-of-the-art solvers can not be counted on to be effective 

n such problems. Thus, the rush was on for who could develop 

he best heuristic for solving the mean-variance cardinality con- 

trained portfolio selection problem. 

To not repeat what already has been done, it is pointed out 

hat two reviews of the literature on the mean-variance cardi- 

ality constrained portfolio selection problem (CC) already ex- 

st. The first, contained in the article by Woodside-Oriakhi, Lu- 

as, & Beasley (2011) , covers 22 articles published between the 

ime of the Chang et al. (20 0 0) and 2010, grouped by type of

euristic into three categories. The categories are: exact proce- 

ure modification approaches (5 papers), single metaheuristic ap- 

roaches (11 papers), and multiple metaheuristic approaches (6 pa- 

ers). In the exact procedure modification category, the heuristics 

re constructed out of exact method tools such as special terms 

nd cuts as for example in the papers of Shaw, Liu & Kopman 

2008) and Bertsimas & Shioda (2009) . In the single metaheuris- 
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ic category, the papers employ single heuristics such as simu- 

ated annealing, neural networks, and multiobjective evolutionary 

lgorithms. Examples are found in the neural networks paper of 

ernández & Gómez (2007) and in the multiobjective evolution- 

ry paper by Branke, Scheckenbach, Stein, Deb, & Schmeck (2009) . 

n the multiple metaheuristic category, where the papers involve 

wo or more metaheuristics, sometimes in combination and other 

imes for use in comparing against one another, we have for ex- 

mple Ehrgott, Klamroth, & Schwehm (2004) and Ruiz-Torrubiano 

 Suárez (2010) in which simulated annealing, tabu search, and 

enetic algorithms are used. 

The second review is contained in Kalayci, Ertenlice, Akyer, & 

ygoren (2017) and covers heuristics published between the time 

f Woodside-Oriakhi et al. (2011) through 2015. In this review 

re listed an additional 38 papers with 5 falling into the ex- 

ct procedure modification category in which Cesarone, Scozzari, 

 Tardella (2013) and Cui, Zheng, Zhu, & Sun (2012) are exam- 

les; 24 falling into the single metaheuristic category in which 

adjadi, Gharakhani, & Safari (2012) and Lwin, Qu, & Kendall 

2014) are examples; and 9 falling into the multiple metaheuris- 

ic category in which Anagnostopoulos & Mamanis (2011) and 

aykaso ̆glu, Yunusoglu, & Özsoydan (2015) are examples. It is in- 

eresting to note that out of the 24 in the single metaheuristic 

ategory, 17 used particle swarm, ant colony, artificial bee colony, 

nd firefly optimization strategies (as in Deng & Lin, 2010; Deng, 

in, & Lo, 2012 ; and Kalayci et al., 2017 ) in contrast to only one

warm optimization heuristic ( Cura, 2011 ) showing up in the first 

eview. 

Since the Kalayci et al. (2017) review, another 13 articles pre- 

enting heuristics of which we are aware have appeared such 

s by Bertsimas & Cory-Wright (2022) , Cesarone, Scozzari, & 

ardella (2015) , and Juszczuk, Kaliszewski, Miroforidis and Pod- 

opaev (2022) , Liagkouras & Metaxiotis (2018a,b) and Salehpoor 

 Molla-Alizadeh-Zavardehi (2019) to name five. By the way, 

alehpoor & Molla-Alizadeh-Zavardehi (2019) also contains an ex- 

ellent bibliography. 

With all of the 73 papers alluded to above, and with a few of 

hem proposing more than one, this brings us to over 70 heuris- 

ics that have be proposed. A problem with all of the heuristics 

s that they involve intricate procedures that would require a spe- 

ialist in any procedure in question to operate. Consequently, they 

ould not be an easy sell to Wall Street (that is, financial mar- 

ets in general) due to the considerable amounts of often esoteric 

etail that one would have to have knowledge about to operate. 

oreover, other than for only a few of the heuristics such as by 

esarone et al. (2013) and Bertsimas & Cory-Wright (2022) that 

ave been subjected to considerable testing, the computational ex- 

erience reported in support of the bulk of the heuristics has been 

imited to only a handful of small test problems often from Beasley 

20 0 0) , so we don’t yet know what to expect from them over the

ong haul and on larger problems. In addition to all of this, run 

imes are not short and this would get in the way of them be-

ng used in practice. In summary, there is not enough standard, 

traightforward, and familiar about them for one to feel that many 

ight be on the verge of being used in practice. 

However, the approach of this paper is different. With the ap- 

roach only involving minute changes being made to the covari- 

nce matrix, and with that being easily carried out in Matlab, the 

pproach does not require a specialist to operate like the heuristics 

ust discussed. Actually, its simplicity is such that it would not be 

eyond a portfolio manager to carry out the approach himself or 

erself if it came down to it. Also, the approach would rank high 

n being explainable to clients having any kind of interest in the 

rocess. Furthermore, the speed at which the approach can be car- 

ied out, the size of the problems that can be addressed, and the 
631 
ccuracy of the solutions generated is not matched by any of the 

0+ heuristics. 

To instill confidence in our approach, all meaningful aspects of 

he approach have been subjected to extensive computational test- 

ng to provide an understanding about what to expect from the 

pproach in practice as will follow shortly. But first, in the next 

ection, we algorithmically describe the approach. 

. The approach and test problem generator 

While the driving force behind the 70+ heuristics recapped in 

he previous section has been the NP -hardness of (CC) brought on 

y the binary variables, it is not out of the question that other 

hings could be at play. For instance, in Cplex, if � is not of full

r near full rank, Cplex will most likely return the error message 

Covariance Matrix Not Convex” and not start. In using Gurobi, an- 

ther state-of-the-art solver (our favorite), one might get the mes- 

age “Objective Q not PSD”. In our analysis, it is not NP -hardness 

hat is the most serious cause of solvers like Cplex and Gurobi not 

eing able to solve instances of (CC) . It is the degree to which �
s not of full rank that is the culprit. That is, with � usually 120

r less in rank when constructed from historical return data, suc- 

ess in problems with more than a few percent more in securities 

ecomes hard to come by. 

Thus, rather than NP -hardness, this has caused us to think in 

he direction of the covariance matrix with our approach for en- 

bling the solution of (CC) . Under the prospect that a non-positive 

efinite covariance matrix can have its rank improved by mak- 

ng small adjustments to its elements, we pursue an approach 

or problems with non-positive definite covariance matrices that 

ndeavors to improve the rank of the covariance matrix without 

hanging the matrix much as follows. 

We first take the problem’s non-positive definite covariance 

atrix and decompose it into its standard deviation vector and its 

orrelation matrix. Then, using a routine drawn from the research 

f Qi & Sun (2006) , which in turn was inspired by research from 

igham (1988, 2002) , we strive to compute the positive definite 

orrelation matrix that is as close as we are able to compute to the 

orrelation matrix of the original covariance matrix. (This is be- 

ause the set of all positive definite correlation matrices is open.) 

hen, by pre- and post-multiplying the computed correlation ma- 

rix by the diagonal matrix along whose main diagonal is the stan- 

ard deviation vector, we form a slightly different version of the 

riginal covariance matrix that we call the closest correlation ma- 

rix covariance matrix , whose rank should be much improved. With 

his matrix used in place of the original covariance matrix, we take 

CC) to a state-of-the-art solver, which in this paper is Gurobi, for 

olution. Of course, the solutions generated when using the closest 

orrelation matrix covariance matrix will not be precisely optimal, 

ut as we will see, they will be remarkably close. Step-by-step, the 

losest correlation matrix covariance matrix routine is as follows. 

(1) Let � be the starting covariance matrix. 

(2) Compute its standard deviation vector and correlation ma- 

trix Corr . This is done by means of cov2corr in Matlab. 

Then form the diagonal matrix Std whose main diagonal is 

the standard deviation vector. 

(3) Compute pdCorr where it is to be the positive definite cor- 

relation matrix “closest” to Corr . This is done by invoking 

the procedure of Qi & Sun (2006) in the form of the Matlab 

executable CorNewton1 downloaded from the first author’s 

website several years ago. By closest , it is meant in accor- 

dance with the Frobenius norm. With the Frobenius norm 

of a matrix being the square root of the sum of the squares 

of all elements in the matrix, pdCorr is then the matrix X 
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Table 1 

Parameter settings used by the random portfolio selection problem generator to 

generate the covariance matrices � and expected return vectors μ used in the 

problems of the experiments of this paper. 

Parameter Quantity Value 

� main diagonal elements mean 0.00554 

stdev 0.00667 

� off-diagonal elements mean 0.00124 

stdev 0.00115 

μ-vector elements mean 0.00899 

stdev 0.00938 
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2 All of the computational work in this paper was run on an HP Z2 Tower G5 

Desktop with 32GB of RAM at the University of Georgia. 
obtained by solving 

min 

1 

2 

‖ Corr − X ‖ 

2 

s.t. x ii = 1 i = 1 . . . n 

X ∈ S 
n 
+ (1) 

where S n + is the set of all symmetric n × n positive definite 

matrices. 

(4) Upon computing rSig = Std ∗ pdCorr ∗ Std , rSig is the re- 

computed covariance matrix, called the closest correlation 

matrix covariance matrix in this paper. 

(5) With rSig used in place of �, (CC) is sent to a state-of-the- 

art solver such as Cplex or Gurobi for solution. 

Since S 
n + , the set of all symmetric n × n positive definite ma- 

rices, is an open set, program (1) is only run until a tolerance is

atisfied such as 1.0e-4 (default value in CorNewton1 ). While pd- 

orr is to be positive definite, there is no exact guarantee because 

f the tolerance. But in our experiments, we have found that rSig 

ormally computes to over 95% of full rank as shown in the next 

ection, and that has been enough to enable the computation of all 

00-point efficient frontiers of all of the problems of this paper. 

Because there are not enough real-world portfolio selection 

roblems to supply the test problem needs of this paper, we call 

pon a random portfolio selection problem generator. The ran- 

om problem generator employed is patterned after the random 

ortfolio selection problem generator used in Hirschberger, Qi, & 

teuer (2010) . In accordance with this, the covariance matrices �
f the problems generated are produced by the routine described 

n Hirschberger, Qi, & Steuer (2007) . 

For realism in the generation of the � and μ in the problems 

enerated for this paper, the random problem generator was pa- 

ameterized with data drawn from the stocks that were in the 

&P500 over the 5-year period January 1, 2015 through December 

1, 2019, similar to as was done in Steuer & Utz (2022) but with

ifferent seeds. These parameter values are as given in Table 1 . 

Using these parameter values, we have in Table 2 the steps of 

he random problem generator for generating the problem situa- 

ions needed in this paper. With regard to Step 1, in this paper we 

xperiment with problem sizes of 250, 500, 750 and 1000 securi- 

ies to show how the approach works in problems of these sizes. 

ote that in the random problem generator, we create two ver- 

ions of each instance of (CC) generated. In the first version, to 

enerate the covariance matrices � in accordance with the S&P500 

ata, the main diagonal elements of the covariance matrices are 

esigned to average 0.00554 with a standard deviation of 0.00 6 67, 

nd the off-diagonal elements of the covariance matrices are de- 

igned to average 0.00124 with a standard deviation of 0.00115. 

his is done in Step 2. To generate the expected return vectors μ in 

ccordance with the S&P500 data, their elements are designed to 

verage 0.00899 with a standard deviation of 0.00938. This is done 

n Step 3. After this in Step 4, values for L , U and K are supplied to

omplete the specification of the instance of (CC) generated. 

That completes the first version. 
632 
To create the second version of the instance of (CC) just gener- 

ted, we compute �’s closest correlation matrix covariance matrix 

Sig in Step 5, Then in Step 6, instead of �, we use rSig as the co-

ariance matrix in the second version of the instance of (CC) . This 

s done so that the effectiveness of the closest correlation matrix 

ovariance matrix approach can be tested problem by problem. 

CPU times per problem for carrying out the construction of 

Sig from its � using Steps (2) through (4) of the closest correla- 

ion matrix covariance matrix routine specified earlier in the sec- 

ion are given in Table 3 . For instance, the time taken to convert 

 covariance matrix � of size 750 to its rSig shows an average of 

.14 seconds. 2 

. Physical and operational closeness of the rSig 

In this section we show how close a problem’s closest corre- 

ation matrix covariance matrix rSig is to its original covariance 

atrix � physically, and how close the results of using rSig vs. 

test out in an operational setting. Then we discuss the differ- 

nces between the ranks of rSig and � followed by some com- 

ents about the use of state-of-the-art solvers Cplex and Gurobi. 

onsider Table 4 . 

The first four rows show how close the elements of the clos- 

st correlation matrix covariance matrices rSig are to their cor- 

esponding elements in their randomly generated �’s when com- 

uted by the approach. On average, in rows 1 and 2, the numbers 

how that corresponding diagonal elements in the two types of 

ovariance matrices only begin differing from one another in the 

eventh place to the right of the decimal point, and on average, in 

ows 3 and 4, the numbers show that corresponding off-diagonal 

lements only begin differing from one another in the eighth place 

o the right of the decimal point. In this way, with the differences 

ery small, the rSig are very close physically to their �, with the 

elationship holding steady across covariance matrix sizes. 

In rows 5 to 7, we show the results of testing the � and 

heir rSig in an operational fashion. We do this by using the �
nd rSig to compute their regular (i.e., continuous-variable) ef- 

cient frontiers. The efficient frontiers providing rows 5 and 6 

ere obtained by running (CC) with L = 0 , U = 0 . 03 (a reasonable

alue), and the cardinality constraint dropped. Known as early as 

arkowitz (1956) , the obtained efficient frontiers are piecewise 

arabolic. That is, each consists of a connected string of parabolic 

ine segments. In our experiments, the mean number of parabolic 

ine segments making up the continuous-variable efficient frontiers 

hen run with � range from 184.16 to 269.12 as seen in row 5. 

ow 6 shows the degree to which the number of parabolic line 

egments can vary from one problem to the next. 

With regard to row 7, what the 5-tuples mean is as fol- 

ows. Over the experiments, only five types of discrepancies 

ere observed between the two continuous-variable efficient fron- 

iers, that is, when the rSig efficient frontiers had 4 fewer, 2 

ewer, 1 fewer, 1 more, and 2 more parabolic line segments 

han their corresponding � efficient frontiers. This is what the 

−4 , −2 , −1 , 1 , 2) -tuple is all about. In this way, the (0,2,0,0,0) in

he covariance matrix size 750 column means that out of the 25 

ovariance matrices of this size tested, 23 had identical numbers of 

arabolic line segments with only two having discrepancies, both 

ith the rSig efficient frontier having 2 fewer parabolic line seg- 

ents. In this way, looking at the other 5-tuples, the efficient fron- 

iers produced by the rSig ’s of the approach are very close in this 

ense operationally to the efficient frontiers produced by their �’s. 

With all of the covariance matrices produced by the random 

roblem generator having a rank of 23, row 9 shows the ranks to 
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Table 2 

Steps for generating two versions of randomly generated instances of (CC) , one with � as its covariance matrix, and 

the other with �’s closest correlation matrix covariance matrix rSig as its covariance matrix. 

1. Input the portfolio selection problem’s size n . 

2. In accordance with the first four parameters of Table 1 , randomly generate covariance matrix �. 

3. In accordance with the fifth and sixth parameters of Table 1 , randomly generate expected return vector μ. 

4. Equip instance of (CC) with �, μ, and values for L , U and K. 

5. Employing the approach of this paper, compute �’s closest correlation matrix covariance matrix rSig . 

6. Equip a second instance of (CC) with all the same except for rSig replacing �. 

Table 3 

Average times (in seconds) to convert a covariance matrix to its closest correlation matrix covariance matrix counterpart 

using the Matlab routine of CorNewton1 by Qi & Sun (2006) . Sample size 100 for each covariance matrix size. 

Covariance matrix size 250 500 750 1000 

Conversion time (secs) 0.75 3.18 7.14 12.31 

Table 4 

In the first 4 rows, corresponding elements between rSig and � are compared. In terms of parabolic line segments, 

rows 5 to 7 show that there is hardly any difference between the continuous-variable efficient frontiers when run with 

� vs. rSig . In rows 8 and 9, the differences in rank between the originally generated �’s and their rSig ’s are shown. 

Sample size 25 for each covariance matrix size. 

row Covariance matrix size 250 500 750 10 0 0 

1 AveDiagElemDiff 0.000001302 0.000001370 0.000001394 0.000001408 

2 AveDiagElem%Diff 0.0245% 0.0258% 0.0263% 0.0266% 

3 AveOffDiagElemDiff 0.000000544 0.000000569 0.000000574 0.000000578 

4 AveOffDiagElem%Diff 0.2077% 0.3706% 0.4787% 0.4267% 

5 MeanNumParabolicSegs 184.16 221.60 237.77 269.12 

6 StdDevNumParabolicSegs 16.52 23.83 17.97 20.82 

7 Discrepancies ( −4 , −2 , −1,1,2) (0,1,0,1,3) (0,0,2,1,3) (0,2,0,0,0) (3,3,0,0,4) 

8 AveRank( �, 0.0000005) 23 23 23 23 

9 AveRank( rSig , 0.0000005) 244.64 488.80 731.32 974.20 

Table 5 

By size, the percentages of randomly generated �’s that cause Gurobi to respond 

with the message “Objective Q not PSD”. Sample size 500 for each covariance ma- 

trix size. 

Covariance matrix size 250 500 750 1000 

Gurobi Q not PSD percentage 5.4% 5.6% 7.4% 8.0% 
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hich they have been raised by the closest correlation matrix co- 

ariance matrix approach of the paper. That is, they were all trans- 

ormed into rSig ’s with ranks averaging over 97.4% of full rank. 3 

We now need to talk about Cplex and Gurobi. With Cplex hav- 

ng been introduced in 1988 and Gurobi only in 2008, Cplex is the 

est known and most widely used. Reflecting this, in the papers of 

he 70+ heuristics, whenever a reference is made to a state-of-the- 

rt solver, it has always been to Cplex. But now there is Gurobi. 

hile many users have a lot invested in Cplex and would have no 

nterest in changing, we have found Gurobi to have advantages in 

ardinality constrained mean-variance portfolio optimization. The 

ituation is this. Because of the lowness of the ranks of � rel- 

tive to their n , Cplex is not able to solve any of the randomly

enerated problems of this paper. But when equipped with rSig ’s 

s computed by the approach, they all run. However, with Gurobi, 

ost problems run with just �, while those that do not run all run

hen (CC) is equipped with rSig . 

Testing how often randomly generated covariance matrices (all 

f which do not run on Cplex) don’t run on Gurobi either yields 

able 5 . For instance, over a sample of 500 randomly generated 

ovariance matrices with 750 securities, Gurobi only bounced 37 

ack with the message “Objective Q not PSD” and refused to start. 

ote how the percentages in the table only gradually increase with 

roblem size. But by applying the approach, i.e., by computing the 
3 As assessed by the rank function in Matlab with tolerance 0.0 0 0 0 0 05. 

f

t

ρ

633 
roblem’s rSig and then re-running, solutions were obtained to all 

CC) in the same high-speed fashion as with the problems Gurobi 

ad no problem solving in the first place. 

In Table 6 we take another look at the operational closeness of 

he two covariance matrices. In the tests of this table, we com- 

are the minimum variances achieved when using the � as op- 

osed to when using their rSig . This is done by solving (CC) with

ts μT x ≥ ρ constraint deleted for the 16 different (problem size, 

, L, U) combinations indicated. In the table, the avminVar are the 

verage minimum variances of the problems whose covariance ma- 

rix is �, and the avAbsDif show the average absolute differences 

etween the minimum variances of problems solved with � as the 

ovariance matrix and those of the same problems but solved with 

Sig as the covariance matrix. Note how small the avAbsDif are rel- 

tive to their avminVar, showing once again how very close oper- 

tionally the rSig are to their �. 

. Experiments 

In Table 7 , for 10 different cardinalities K and buyin thresholds 

nd upper bounds appropriate to these K-values, we report on ex- 

eriments for computing 100-point cardinality constrained mean- 

ariance efficient frontiers for problems of sizes 250, 500, 750 and 

0 0 0 securities. In rows 4 and 5 of each panel are the means and

tandard deviations of the Inner run times experienced where In- 

er run time is Gurobi 9.5 Runtime as Gurobi was the solver ap- 

lied. In row 8 of each panel are the means of the Outer run times

xperienced where Outer run time is Inner run time plus the time 

o make rSig and all other overhead involved in the 100-point ef- 

cient frontier construction process. For the 100 points of each 

ardinality constrained efficient frontier, 100 optimizations were 

onducted (one for each of the 100 equally-spaced ρ-values taken 

rom the problem’s [ ρmin , ρmax ] ) with the indexing such that op- 

imization 1 starts with ρmin and optimization 100 finishes with 

max . 
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Table 6 

Statistics showing that the use of rSig ’s has virtually no effect on solution accuracy. Sample size 25 for each (problem size, K, L, U) combination. 

K 10 20 40 70 

[ L, U] [0.05,0.20] [0.03,0.10] [0.02,0.06] [0.01,0.03] 

250 avminVar 0.000166967 0.000195995 0.000270676 0.000347326 

avAbsDif 0.000000011 0.000000043 0.000000220 0.000001039 

500 avminVar 0.000112421 0.000132217 0.000182528 0.000234018 

avAbsDif 0.000000005 0.000000139 0.000000494 0.000001685 

750 avminVar 0.000089572 0.000104147 0.000145572 0.000185384 

avAbsDif 0.000000005 0.000000172 0.000000895 0.000002289 

1000 avminVar 0.000079270 0.000090526 0.000124956 0.000160779 

avAbsDif 0.000000005 0.000000160 0.000001100 0.000001572 

Table 7 

Run times (in seconds) and other statistics for computing 250, 500, 750 and 1000-security, 100-point cardinality constrained mean-variance efficient frontiers for different 

values of K. Sample size 25 for each of the forty ( n, K, U, L ) combinations in the panels. 

Panel A n = 250 pts = 100 

1 K 3 5 10 15 20 30 40 70 100 150 

2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03 

3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003 

4 MeanInnerRuntime 21.21 10.98 7.17 7.79 7.43 6.21 6.07 3.36 3.74 4.03 

5 StDevInnerRuntime 7.67 4.21 9.73 0.57 0.65 0.59 8.96 0.28 0.38 0.42 

6 AvOptMaxIdx 25.92 27.16 41.92 37.32 38.16 48.96 64.00 64.40 72.92 76.96 

7 OptMaxToAve 2.08 2.04 1.78 1.79 1.83 1.84 9.09 2.01 1.76 1.57 

8 MeanOuterRuntime 22.07 12.65 8.77 9.40 9.03 7.85 7.61 4.86 5.37 5.66 

Panel B n = 500 pts = 100 

1 K 3 5 10 15 20 30 40 70 100 150 

2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03 

3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003 

4 MeanInnerRuntime 89.36 41.30 27.79 29.13 26.61 22.48 13.21 12.24 14.50 17.64 

5 StDevInnerRuntime 40.22 11.48 2.73 2.95 2.28 7.52 1.07 1.16 1.74 1.84 

6 AvOptMaxIdx 21.76 32.28 41.60 41.48 49.84 55.60 64.92 64.12 59.00 43.60 

7 OptMaxToAve 2.84 1.99 1.66 2.13 1.69 4.44 2.50 2.26 2.09 1.91 

8 MeanOuterRuntime 95.68 50.20 36.56 37.72 35.13 30.99 21.63 20.68 22.97 26.14 

Panel C n = 750 pts = 100 

1 K 3 5 10 15 20 30 40 70 100 150 

2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03 

3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003 

4 MeanInnerRuntime 382.05 88.74 66.51 70.08 60.13 48.07 29.82 26.21 31.39 37.09 

5 StDevInnerRuntime 983.86 17.40 7.19 5.91 7.18 5.33 2.30 2.19 3.07 2.93 

6 AvOptMaxIdx 14.92 18.40 31.08 43.04 52.28 75.68 63.32 66.60 61.80 60.36 

7 OptMaxToAve 5.44 4.51 1.73 1.62 1.77 2.11 2.68 2.52 2.31 2.15 

8 MeanOuterRuntime 400.56 101.28 78.53 82.21 72.00 59.92 41.43 37.92 39.16 49.00 

Panel D n = 10 0 0 pts = 100 

1 K 3 5 10 15 20 30 40 70 100 150 

2 U 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.07 0.04 0.03 

3 L 0.10 0.08 0.05 0.04 0.03 0.02 0.01 0.005 0.004 0.003 

4 MeanInnerRuntime 474.82 187.13 120.16 117.71 101.09 77.38 45.28 43.58 50.70 60.49 

5 StDevInnerRuntime 266.11 78.05 10.86 10.86 8.24 6.54 3.53 2.73 4.02 4.21 

6 AvOptMaxIdx 21.72 22.92 24.28 35.68 47.20 66.32 67.16 51.52 53.88 51.96 

7 OptMaxToAve 4.74 3.07 1.66 1.68 1.83 2.21 3.17 2.43 2.30 2.32 

8 MeanOuterRuntime 504.94 204.89 152.64 149.36 133.24 109.31 76.64 74.99 83.74 93.44 
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Whether looking at Inner or Outer run times, the times facil- 

tated by the approach for whole cardinality constrained efficient 

rontiers are remarkably small, being in the single digits for most 

f Panel A, in the double digits for almost all of Panels B and C,

nd only in the triple digits in Panel C for K ≤ 5 and in panel D for

 ≤ 30 . Illustrating, mean Inner run time for n = 250 when K =100

s 3.74 seconds, mean Inner run time for n = 500 when K =40 is

3.21 seconds, and mean Inner run time for n = 10 0 0 when K =5

s 187.13 seconds. As for cardinality constrained efficient frontier 

un times being at their longest, say when K ≤30 , this is consis-

ent with what the progenitors of the 70+ heuristics have reported, 

hat is, that the longest run times are with the smallest values of 

. However, even at their longest, none of these run times are long 

t all. 

Note how Inner and Outer run times decrease with increased 

ardinality until they bottom out for all problem sizes at K =70 , 

fter which they begin a gradual rise. For instance, mean Outer 
634 
un time when n =10 0 0 bottoms out at K =70 at 74.99 seconds. It

eems logical that this would be due to the portfolios making up 

he continuous-variable efficient frontiers of the problems having 

ardinalities that place the least amount of stress on the cardinality 

onstraint in (CC) when set to 70. But since there could be other 

xplanations, this is something that needs to be researched further 

efore more is said. 

With regard to rows 6 and 7 in the panels, consider the opti- 

izations that have the longest Inner run times out of the 100 of 

ach cardinality constrained efficient frontier. AvOptMaxIdx is then 

he average of the indices of these optimizations over the 25 prob- 

ems in the sample for each ( n, K, U, L ) combination in the panels.

ptMaxToAve is then for each ( n, K, U, L ) combination the average

f the ratios of a problem’s longest Inner run time to the mean 

f the Inner run times of the problem’s other 99 optimizations. 

e include these two rows because of a comment in Bertsimas 

 Cory-Wright (2022) about the optimizations forming the lower 
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Fig. 1. Using the 100 equally-spaced ρ-values from the problem’s interval, at the top (a) is the K = 10 , 100-point cardinality constrained efficient frontier of a 250-security 

problem, and at the bottom (b) is a plot of the Inner run times of the 100 optimizations used to construct it. 
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art of the efficient frontier likely taking the longest. While we do 

ot see this across the board, this effect, however, is observed in 

ll four of our panels for K ≤20 . 

To illustrate, let us first consider Fig. 1 (a). In this figure we 

ave the K =10 , 100-point cardinality constrained efficient frontier 

f a 250-security problem whose U = 0 . 30 and L = 0 . 05 . In prob-

ems of the sizes of this paper, it is to be noted that their car-

inality constrained efficient frontiers, apart from a little granu- 

ar roughness here and there and perhaps a small gap in the near 

ertical lower part of the frontier, follow very closely the sweep- 

ng nature of the efficient frontiers that we have long been fa- 

iliar with in continuous-variable portfolio optimization. This is 

n contrast to the irregularly shaped cardinality constrained effi- 

ient frontiers shown, for example, in Chang et al. (20 0 0) , Jobst,

orniman, Lucas, & Mitra (2001) , and Woodside-Oriakhi et al. 
635 
2011) which can only occur when both K and n are small. But 

s soon as K and n take on larger values as they would in more 

ealistic situations, their cardinality constrained efficient frontiers 

uickly morph into shapes with which we are familiar with all but 

mall traces of the irregularities seen in small problems long left 

ehind. 

In Fig. 1 (b) we have the Inner run times of the 100 optimiza-

ions used to construct the frontier. In the plot the greatest Inner 

un time is 1.837 times the average time of the other 99 optimiza- 

ions. With the greatest run time occurring on optimization 39, 

his is consistent with the AvOptMaxIdx entry in the K =10 col- 

mn of Panel A in Table 7 . However, in our experiments, the phe-

omenon of longest optimization run times gradually shifts to the 

pper portions of the efficient frontiers as K increases as tabulated 

n row 6 of all panels. 
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. Conclusions 

What we have been able to develop is a simple, straightforward, 

nd easy to implement approach that enables one to solve cardi- 

ality constrained mean-variance portfolio selection problems and 

eliver useable portfolio selection solutions to problems with up 

o 10 0 0 securities. Our finding is that it is not the NP -hard nature

f (CC) , but the covariance matrix, that is the stumbling block. For- 

unately, troubles with the covariance matrix can be taken care of 

y making only minute adjustments to it. With the adjustments to 

he covariance matrix having virtually no effect on solution accu- 

acy, the complexities thought to be involved in solving cardinality 

onstrained portfolio problems are avoided. In this way, with the 

ardinality constrained portfolio problem now so easily solved, ef- 

cient frontiers consisting of many points representing them can 

e computed in problems with up to 10 0 0 securities in times not 

elieved possible before. 

In summary, the approach paves ground for a new era in port- 

olio selection. On Wall Street, there is seldom a problem with- 

ut buyin thresholds and cardinality targets. Instead of having to 

ompromise with continuous variables, such problems can now be 

olved in a clear, concise and rapid fashion. 
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