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Management research increasingly recognizes omitted variables as a primary source of endo-
geneity that can induce bias in empirical estimation. Methodological scholarship on the topic 
overwhelmingly advocates for empirical researchers to employ two-stage instrumental vari-
able modeling, a recommendation we approach with trepidation given the challenges associ-
ated with this analytic procedure. Over the course of two studies, we leverage a statistical 
technique called the impact threshold of a confounding variable (ITCV) to better conceptualize 
what types of omitted variables might actually bias causal inference and whether they have 
appeared to do so in published management research. In Study 1, we apply the ITCV to pub-
lished studies and find that a majority of the causal inference is unlikely biased from omitted 
variables. In Study 2, we respecify an influential simulation on endogeneity and determine that 
only the most pervasive omitted variables appear to substantively impact causal inference. Our 
simulation also reveals that only the strongest instruments (perhaps unrealistically strong) 
attenuate bias in meaningful ways. Taken together, we offer guidelines for how scholars can 
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conceptualize omitted variables in their research, provide a practical approach that balances 
the tradeoffs associated with instrumental variable models, and comprehensively describe how 
to implement the ITCV technique.

Keywords:	 omitted variables; endogeneity; impact threshold of a confounding variable; 
instrumental variable modeling; simulations

“Omitted variables bias is said to be the most commonly encountered problem in social 
behavioral sciences.”

— Bascle (2008: 290)

The detrimental influence of omitted variables in empirical analyses has been recognized in 
management research for decades (Bascle, 2008; Hill, Johnson, Greco, O’Boyle, & Walter, 
2021; Shaver, 1998). Omitted variables refer to factors that influence the dependent variable 
of interest but are not included in the analytic model. These variables are problematic for 
empirical estimation when they also influence a focal independent covariate, thus confound-
ing the relationship between the focal independent and dependent variables and causing 
omitted variable bias (Frank, 2000; Semadeni, Withers, & Certo, 2014; Wooldridge, 2010). 
Although confounding omitted variables can create bias in empirical research regardless of 
discipline, they are particularly deleterious for management research since the literature is 
“fundamentally predicated on the idea that management’s decisions are endogenous .  .  . if 
not, managerial decision-making is not strategic; it is superfluous” (Hamilton & Nickerson, 
2003: 51).

The role of omitted variable bias in management research is embedded within broader work 
on endogeneity, which paints a gloomy picture for empirical researchers (Hill et al., 2021). 
Semadeni et al. (2014: 1071) suggest that endogeneity can have “pernicious effects” even when 
the error term has a weak correlation with predictors. Scholars indicate an error term that is 
correlated with the independent and dependent variables can create estimation biases almost 
irrespective of the magnitude of the correlation (Certo, Busenbark, Woo, & Semadeni, 2016; 
Hamilton & Nickerson, 2003; Semadeni et al., 2014). Compounding this problem is the fact 
that one of the most popular techniques to attenuate bias from endogeneity—instrumental vari-
able modeling—can undermine inference (Larcker & Rusticus, 2010; Semadeni et al., 2014).

While the message of this literature on endogeneity is clear and beneficial, extant meth-
odological research does not isolate the influence of omitted variables as a specific source of 
endogeneity or offer guidance on how to identify when an omitted variable may create esti-
mation issues. This is troublesome because scholars are often primed to consider that there is 
nearly always a relevant omitted variable that likely biases statistical models (Hamilton & 
Nickerson, 2003). Yet models that do not specifically address omitted variables may at times 
be more appropriate than those that work to attenuate bias, especially given the tradeoffs 
associated with instrumental variable regression and the efficiency of OLS models (Kennedy, 
2008; Semadeni et al., 2014; Wooldridge, 2010). Accordingly, the purpose of this study is to 
examine the following questions: (1) To what extent is omitted variable bias an issue in man-
agement research? (2) Can scholars quantify the effect of omitted variables? and (3) When 
should scholars seek to address omitted variables in their empirical estimation?
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To address these questions, we conduct two studies that leverage an emerging statistical 
technique referred to as the impact threshold of a confounding variable (ITCV). The ITCV is 
focused on potential bias in causal inferences, or the ability to “draw conclusions about 
causal relationships between dependent and independent variables from statistical models 
using data from observational studies” (Pan & Frank, 2003: 315). This procedure delineates 
how correlated a confounding (used interchangeably with omitted) variable would have to be 
with the independent and dependent variables for the statistical inference to change (Frank, 
2000; Frank, Maroulis, Duong, & Kelcey, 2013). The ITCV therefore shifts the concern from 
whether an empirical relationship is biased due to an omitted variable to “how much bias 
must be present to invalidate an inference” (Frank et al., 2013: 448). Scholars suggest that 
relatively high values of the ITCV indicate there is unlikely a biased causal inference in a 
study, whereas lower ITCV scores imply that an omitted variable bias is a potentially press-
ing concern (Harrison, Boivie, Sharp, & Gentry, 2018; Hill, Recendes, & Ridge, 2019; 
Hubbard, Christensen, & Graffin, 2017).

In Study 1, we conduct a content analysis of all empirical articles published in the Academy 
of Management Journal (AMJ), Journal of Applied Psychology (JAP), Journal of Management 
(JOM), and Strategic Management Journal (SMJ) in 2017 to calculate the ITCV values asso-
ciated with each focal relationship in the studies.1 After estimating the ITCV values, we look 
across the articles to approximate how likely it is for causal inferences to have been invali-
dated by an omitted variable. The outcomes associated with our examination are informative. 
Out of 382 causal relationships tested in empirical articles in these journals that do not 
explicitly account for potential omitted variables, approximately 15% to 25% of them were 
potentially biased from an omitted factor using notably stringent and rigid interpretations of 
the ITCV (Larcker & Rusticus, 2010; Pan & Frank, 2003). Almost no relationships featured 
biased causal inference if we consider a more realistic interpretation of the technique.

In Study 2, we use the values from our content analysis to perform a simulation that 
extends methodological scholarship on endogeneity (e.g., Certo et  al., 2016; Larcker & 
Rusticus, 2010; Semadeni et  al., 2014). In particular, we respecify one of the influential 
simulations on the topic (i.e., Semadeni et al., 2014), such that we focus on the potential 
biases induced by omitted variables rather than all sources of endogeneity simultaneously. 
We examine the distribution of beta coefficients across 1,000 simulation iterations per condi-
tion. Stated differently, we estimate the coefficient for each simulation condition 1,000 times, 
and then we depict the distribution of that coefficient across the 1,000 iterations. This repre-
sents one advantage of simulations since parameter estimates are intended to help scholars 
determine a sampling distribution of a relationship (Cohen, Cohen, West, & Aiken, 2003; 
Goldfarb & King, 2016; Schwab & Starbuck, 2017). Our simulations reveal that models 
begin to exhibit bias (i.e., OLS produced statistically significantly different estimates than 
specified) only when omitted variables feature higher confounding correlations than exist in 
most studies in our content analysis. Even when the omitted variable(s) features such high 
correlations, the causal inference from the outcomes remains almost unchanged. Our simula-
tions also show that biased regression models estimate coefficients more similar to correctly 
specified models than do the two-stage instrumental variable techniques often employed to 
attenuate bias in most conditions.

This study offers at least two important implications for empirical management research. 
First, we extend the relatively nascent knowledge about the ITCV. To date, only a few studies 
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published in management incorporate the ITCV in their empirical analyses, and to our knowl-
edge, no studies have done so prior to 2017 (e.g., Busenbark, Lange, & Certo, 2017; Harrison 
et  al., 2018; Hill et  al., 2019; Hubbard et  al., 2017). Although a search for management 
research that includes the ITCV populates several working papers and manuscripts invited 
for resubmission, there is certainly no consensus about how to use it, when it is appropriate, 
and when it is misleading. Before delving into our two interrelated studies, we thus offer 
comprehensive guidelines for how to appropriately incorporate and interpret the ITCV.

Second, we help scholars begin to think through what omitted variables may need to look 
like in order to represent problematic confounds for any specific relationship of interest. We 
certainly recognize the potentially disastrous effects omitted variables can have on accurate 
parameter estimation and causal inference (Hamilton & Nickerson, 2003; Semadeni et al., 
2014). At the same time, we also acknowledge that most empirical modeling in management 
research (and the broader social sciences for that matter) deals with causal inference rather 
than seeking to uncover exact parameter estimates or coefficients (Cohen et al., 2003; Frank, 
2000; Wooldridge, 2010). We therefore step back from the idea that virtually all omitted 
variables induce substantive issues in analytical estimation (Certo et  al., 2016; Semadeni 
et al., 2014), and we instead adopt an approach that recognizes not all omitted variables are 
problematic. One implication from this study, then, is to aid researchers in thinking more 
comprehensively about what omitted variables may exist and whether they create estimation 
issues.

Omitted Variable Bias in Management Research

Omitted Variable Bias as a Source of Endogeneity

“When there is correlation between a regressor [independent variable] and the error term, 
that regressor is said to be endogenous; when no such correlation exists the regressor is said 
to be exogenous” (Kennedy, 2008: 139, emphasis in the original). Endogeneity biases results, 
producing incorrect coefficient estimates and predicting statistical significance more or less 
often than what actually exists (Bascle, 2008; Hill et al., 2021). Although the purpose of this 
study is not to exhaustively demonstrate how and why endogeneity can bias results, we reit-
erate the four potential sources of endogeneity that Kennedy (2008) describes: (1) measure-
ment error, (2) autoregression, (3) simultaneous causality, and (4) omitted variables.

We focus this study on omitted variables. Although we realize all sources of endogeneity 
are potentially problematic, omitted variables bias represents one of the most pervasive 
issues for management researchers (Hamilton & Nickerson, 2003; Hill et al., 2021). To this 
point, we examined all published studies in AMJ, JOM, and SMJ from the years 2000-2018 
and found that omitted variables were discussed in the context of potential empirical bias 
more so than any other source of endogeneity. In fact, empirical research published in these 
journals highlighted omitted variables in the context of bias from endogeneity approximately 
three times as often as any other source, including autocorrelation, which is often discussed 
in the context of panel data and repeated observations over time.2

Omitted variables can influence the relationship between independent and dependent 
variables by assigning undue variance to the independent variable such that its coefficient is 
larger than in the absence of omitted variables (Hamilton & Nickerson, 2003; Kennedy, 
2008). We depict these relationships between focal variables and an omitted variable in 
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Figure 1, where β1 represents the estimated relationship between the independent variable (x) 
and the dependent variable (y) from a regression model (such as OLS). In the absence of a 
confounding variable, β1 is an accurate reflection of the correlation between x and y. In the 
presence of a confounding variable, however, β1 partially represents the correlation between 
x and y and partially reflects the relationship between the omitted variable and y. The extent 
to which β1 captures some of the correlation with the confounding variable is referred to as 
bias in the coefficient. In some cases, the correlation between the confounding variable and 
x and/or y is low enough that β1 reflects only trivial bias and does not change causal infer-
ence. In more extreme cases when the confounding variable explains all (or most) of the 
correlation between x and y, β1 is spurious and causal inference is biased (Kennedy, 2008; 
Wooldridge, 2010).

Techniques to Minimize the Bias from Omitted Variables

Given the potential for omitted variable bias in management research (Bascle, 2008; Hamilton 
& Nickerson, 2003), scholars have explored analytic techniques to reduce corresponding 
contamination in empirical models (Semadeni et al., 2014). The most prevalent technique 
involves instrumental variables and a sequence of equations (Kennedy, 2008). Instrumental 
variables are parameters that are correlated with the independent variable but not any con-
founding variables (Kennedy, 2008; Larcker & Rusticus, 2010). Scholars can use instrumen-
tal variables in two-step procedures that adjust parameters and the error term in a way that 
attenuates bias stemming from the omitted variable (Wooldridge, 2010).

Despite the intuitive nature of instrumental variable techniques, there are at least two 
important issues associated with such procedures. First, these techniques are inefficient com-
pared to conventional modeling like OLS regression (Greene, 2018; Kennedy, 2008; 
Wooldridge, 2010). Inefficiency refers to the idea that the model is less likely to detect a 
nonzero relationship than may actually exist owing to inflated standard errors. Kennedy 
(2008: 149) suggests this occurs because the empirical estimator loses a great deal of “infor-
mation” about the independent variable by predicting it as a function of instruments. While 
good instruments provide an unbiased estimate, they limit the variance (and thus covariance) 
of the independent variable. Scholars are therefore cautioned to consider the prevalence of 
bias before subjecting their models to this potential error (Baum, 2006; Kennedy, 2008), a 

Figure 1
Relationships Between Independent, Dependent, and Confounding Variables
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practice that is seemingly rarely employed in published scholarship and thus represents the 
impetus for our research.

Second, irrelevant or endogenous instruments can introduce more bias in the model than 
what would have otherwise existed in the absence of instrumental variable techniques 
(Semadeni et al., 2014; Stock, Wright, & Yogo, 2002). Irrelevant instruments refer to those 
that do not have strong predictive power for the independent variable of interest (Stock et al., 
2002), so they produce biased results since they do not accurately estimate the independent 
variable and thus induce measurement error (Kennedy, 2008). Endogenous instruments refer 
to those that are also correlated with the confounding variable (or the structural error term 
more broadly) and thus produce a biased estimate of the independent variable (Kennedy, 
2008; Semadeni et al., 2014). Semadeni et al. (2014) demonstrate through simulations that 
even slightly endogenous instruments create bias where none otherwise exists.

Although scholars are repeatedly cautioned about the unintended and unfavorable conse-
quences of two-step instrumental variable procedures (Certo et al., 2016; Kennedy, 2008; 
Semadeni et  al., 2014), omitted variable bias remains a pervasive issue on the minds of 
authors, reviewers, and editors (Bettis, Gambardella, Helfat, & Mitchell, 2014; Hill et al., 
2021). Over seven times as many articles published in AMJ, JOM, and SMJ mention and 
adjust for endogeneity (or omitted variables) in 2016 or 2017 than did in 2000 to 2003, and 
the portion of articles that consider omitted variables has more than doubled since 2011. It is 
clear that omitted variable bias is top-of-mind and that scholars are required to consider it 
sometime during or before the publication process. One central imperative of the present 
study, then, is to further explore whether omitted variables are a pervasive issue for manage-
ment research and what characteristics of omitted variables create estimation issues.

ITCV

Overview of the ITCV

The ITCV is an index developed to quantify the impact of an omitted variable on parameter 
estimation and help scholars consider whether confounding factors might exist in their data. 
More specifically, the ITCV calculates the minimum correlations necessary to alter a causal 
inference of a regression coefficient due to an explanatory variable that is not included in the 
model (Frank, 2000; Frank et al., 2013). As Frank (2000: 150) describes, the purpose of the 
ITCV is “to calculate a single valued threshold at which the impact of the confound would be 
great enough to alter an inference with regard to a regression coefficient.” Scholars can use 
the ITCV equation as a sensitivity analysis to determine the correlation values at which the 
estimate for the independent variable becomes sufficiently high enough to be considered “not 
zero” based on a specified p value (see Frank, 2000: 153, Equation 3).

Figure 1 helps demonstrate the practical application and interpretation of the ITCV. In 
Figure 1, β1 represents the parameter estimate for the independent variable. Management 
scholars tend to interpret the usefulness of β1 based on whether or not it is likely nonzero (i.e., 
the causal inference), which often involves examining the p value and/or confidence interval 
of the coefficient (Schwab & Starbuck, 2017). If the confounding variable (cv) is correlated 
highly enough with the independent variable (rx,cv) and the dependent variable (ry,cv), β1 may 
reflect a nonzero relationship between x and y owing to the correlations between cv and the 
independent and dependent variables (rx,cvry,cv) instead of any actual correlation between x 
and y. This scenario represents biased causal inference.
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The purpose of the ITCV is to provide a value for the correlation between the omitted 
variable and both focal variables (rx,cvry,cv) at which a nonzero β1 is actually caused by the 
confounding variable instead of the relationship between x and y. For instance, an ITCV 
value of 0.20 means an omitted variable would need to have an average partial correlation 
with the independent and dependent variables at a minimum of 0.20 to invalidate the causal 
inference. Higher ITCV scores indicate an omitted variable would have to possess a higher 
correlation, which suggests it is less likely to bias inferences.

We provide Figure 2 to depict the three elements that influence the size of the ITCV at any 
given p value—the sample size, the coefficient for the independent variable, and the standard 
error of the independent variable (Frank, 2000). All else equal, changing any of these three 
elements will alter the ITCV values. For instance, increasing the sample size to test a specific 
relationship will decrease the ITCV value because larger sample sizes confer more accuracy 
with relationships and make correlations more salient. When the sample size is larger, an 
omitted variable with a lower correlation is simply more influential. Conversely, a larger 
absolute coefficient for the independent variable increases the ITCV since the estimated rela-
tionship is more differentiated from zero. Similarly, increasing the standard error of a param-
eter estimate speaks to the accuracy of the sampling distribution of coefficients (smaller 
standard errors translate to more accuracy) and decreases the ITCV.3

Scholars have also endeavored to build on the ITCV in order to develop a similar tech-
nique with identical inputs that works to address situations when the ITCV is less appropriate 
(we discuss the limitations of the ITCV in the coming sections). Although management 
scholars have referred to such an interpretation as the ITCV because the inputs for the calcu-
lations are identical to those for the correlation-based value, Frank et al. (forthcoming) refer 
to this approach as the robustness of inference to replacement (RIR). The RIR provides 
insight into the percentage of a parameter estimate that would need to be biased in order to 
invalidate causal inference (Xu & Frank, forthcoming). Although a comprehensive review of 
the RIR is beyond the scope of our research, Appendix 1 details essential elements of the 
technique.

Since the ITCV (and the RIR for that matter) is concerned with omitted variables that may 
shift estimated relationships further from zero, the directionality of the correlations is an 
integral element of the technique. If the relationship between x and y is positive, the product 
of the correlations between those two focal variables and the omitted variable must be posi-
tive to induce bias (i.e., both must be positive or negative, but not opposite). The inverse is 
true if the substantive relationship is negative (i.e., the omitted variable must be negatively 
correlated with one of the variables and positively correlated with the other) (Frank, 2000; 
Frank et al., 2013). We summarize the role of directionality in Appendix 2.

Figure 2
Influence of Different Inputs on the ITCV

23Busenbark et al. / Omitted Variable Bias



Interpreting the ITCV

Larcker and Rusticus (2010) were among the first scholars to incorporate and interpret the 
ITCV in business research. In their models, they found that the ITCV value was 0.167, mean-
ing an omitted variable would have to possess an average correlation of at least 0.167 with 
both bid-ask spread (the independent variable) and disclosure quality (the dependent vari-
able) for the estimated nonzero relationship between the two to actually not be different from 
zero.4 As Larcker and Rusticus (2010: 202) argue in their study, scholars “need to develop a 
benchmark for the size of likely correlations involving the unobserved confounding variable. 
While, by definition, we do not have the unobservable confounding variable, we do have 
other control variables.” These scholars then describe how control variables represent an 
appropriate benchmark against which to determine whether the ITCV value may reasonably 
reflect relationships with a confounder.

The management scholars who have incorporated the ITCV have followed the interpreta-
tion Larcker and Rusticus (2010) propose by using the control variables (i.e., covariates) in 
their studies as proxies for the potential correlations of an omitted variable (Busenbark et al., 
2017; Gamache, McNamara, Graffin, Kiley, Haleblian, & Devers, 2019; Harrison et  al., 
2018; Hubbard et al., 2017; Oliver, Krause, Busenbark, & Kalm, 2018). These researchers 
suggest that if no (or very few) measured covariates possess correlations higher than the 
ITCV value, it is unlikely an omitted variable would feature such a correlation. For instance, 
Hubbard et al. (2017: 2262) contend, “.  .  . it would take a correlated omitted variable with an 
impact nearly as large as the strongest variable in this model to overturn the results. Assuming 
that we have a reasonable set of control variables, this suggests that the results are not likely 
driven by a correlated omitted variable.” Similarly, Oliver et  al. (2018: 122) uncover an 
ITCV of 0.25 and argue, “given the maximum correlation between our control variables and 
our dependent variable and/or independent variables is 0.09, it is hard to imagine an omitted 
variable with a correlation greater than the necessary 0.25.”

Although a majority of the research that has leveraged the ITCV focuses on control vari-
ables with a correlation between the independent and dependent variables at a value that 
must exceed the ITCV threshold as a reasonable approach (Gamache & McNamara, 2019; 
Oliver et al., 2018), it is important to highlight that the ITCV represents the path coefficient 
of a relationship that reflects the multiplication of two correlations. Put a different way, the 
most accurate means to interpret the ITCV involves multiplying the correlation between the 
control/independent variable by the correlation between the control/dependent variable and 
determining if the square root of that correlation is greater than the ITCV value. Figure 1 
helps illustrate this point; if we substitute a control variable for the confounding variable (cv), 
any control with rx,cvry,cv (the square root of the multiplication of the two correlations) greater 
than the ITCV represents a potentially problematic proxy.

Perhaps following the lead of Larcker and Rusticus (2010), the overwhelming majority of 
research that seeks to interpret the ITCV tends to examine the zero-order correlations between 
control variables as such proxies. The ITCV, however, represents the requisite partial correla-
tions with a confounding variable to invalidate an inference (Frank, 2000; Frank et al., 2008). 
Stated differently, the ITCV calculates the threshold correlations with a confounding variable 
after partialling out (i.e., removing) all the shared covariance with all the other covariates in 
the model. Accordingly, partial correlations are typically notably lower than zero-order cor-
relations (see Cohen et  al., 2003: Section 3.3 for formulas and discussions of partial 
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correlations). This means interpreting the ITCV against the zero-order correlations typically 
featured in a “descriptive statistics” table is incredibly conservative since all of the correla-
tions with control variables featured in the table are surely larger than their partial versions.

Nevertheless, it remains difficult to adjust the zero-order correlations from such a table to 
partial correlations because scholars typically do not report the requisite information to make 
the post hoc transformations. For this reason, our results in Study 1 feature the conservative 
zero-order correlations from published studies. We therefore argue it is incumbent on 
researchers seeking to interpret the ITCV to at least note the highest partial correlations in 
their study against which to compare the ITCV value. Although we recognize space is at a 
premium in the publication process and may not allow for a partial correlation matrix, schol-
ars can minimally indicate the variables with the strongest partial correlations in the context 
of their ITCV analyses.

Limitations of the ITCV

Notwithstanding the merits of the ITCV, there remain several empirical and conceptual limi-
tations. Perhaps most notably, it is important to highlight that the ITCV is useful to examine 
the causal inference and statistical significance of relationships between independent and 
dependent variables, but it does not address inaccuracies of the parameter estimate itself 
(Frank, 2000; Frank et al., 2013; Larcker & Rusticus, 2010). Indeed, the ITCV represents a 
threshold correlation at which a statistical inference regarding a hypothesized relationship 
estimated from a model (at any given specified p value) is invalidated if the correlation with 
that omitted variable is higher than the threshold. The actual value and practical interpreta-
tion of the coefficient, however, may change quite drastically if an omitted variable exists 
with a correlation lower than the threshold value even if the statistical inference remains the 
same. The ITCV thus helps provide sensitivity analyses for determining whether a coeffi-
cient is reasonably nonzero, but it does not afford scholars much guidance in terms of practi-
cally interpreting their models.5

Further, and despite the prevalent use of such control variable-based interpretations of the 
ITCV, they are not infallible. It is indeed possible that an omitted variable exists that exhibits 
a correlation with the independent and dependent variables at values greater than control 
covariates included in any given study. There is also a fair degree of subjectivity in how 
scholars choose to incorporate control variables as comparisons for a potential omitted vari-
able. As we highlight in this section, most scholars consider whether there are at least one or 
two controls with correlation properties that exceed the ITCV.

The appropriateness of the ITCV also depends on the nature of the empirical estimation 
procedure and corresponding data. As Frank (2000) describes, the ITCV is unable to provide 
much insight for estimates from logit or probit models. The ITCV is, however, appropriate 
for other models that use maximum likelihood estimation, such as panel data models (e.g., 
fixed effects or random effects), tobit models, weighted regression, Poisson models, and 
many other similar techniques. The ITCV is also currently unable to address interaction 
terms because the marginal effects of the relationships are contingent on the values of the 
lower order constituents.6 Some preliminary research suggests omitted variable bias may be 
remarkably less pronounced in interaction terms than conventional variables (Bun & 
Harrison, 2019), though, so it is possible that the ITCV is superfluous in these scenarios.
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Illustrating the ITCV in Management Research

The ITCV is a quite accessible tool that management scholars have begun to adopt over the 
course of the past several years (e.g., Busenbark et al., 2017; Harrison et al., 2018; Hill et al., 
2019; Hubbard et al., 2017). For instance, strategy scholars have incorporated the ITCV in 
their studies to examine how an omitted variable may (or may not) overturn the relationship 
between foreshadowing acquisitions and analyst assessments (Busenbark et al., 2017), CSR 
investments and CEO dismissal (Hubbard et  al., 2017), media coverage and director exit 
(Harrison et al., 2018), board chair orientations following the appointment of a female CEO 
(Oliver et  al., 2018), and CEO characteristics and competitive attacks (Hill et  al., 2019), 
among others.

Although more micro-oriented research has yet to adopt the ITCV to our knowledge, it 
could prove quite helpful in this domain as well. This is perhaps particularly the case for 
organizational behavior studies that involve samples derived from time-limited settings, such 
as experience sampling methods (ESM) studies (Gabriel et al., 2019), although the value of 
the ITCV is certainly not confined to such settings. In micro-oriented management scholar-
ship, researchers are often constrained in terms of the number of variables they can collect, 
so it is quite costly to secure more data after the initial process (Atinc, Simmering, & Kroll, 
2012; Gabriel et al., 2019). Indeed, a great deal of this research (e.g., job satisfaction, leader-
member exchanges, voice, stress, etc.) examines data collected via survey or nonrandomized 
experiment (Judge, Locke, Durham, & Kluger, 1998; Matta, Scott, Koopman, & Conlon, 
2015; Van Dyne & LePine, 1998). Accordingly, employing tenable two-stage models is chal-
lenging because locating viable instruments often requires a variety of variables at the 
researcher’s disposal. Organizational behavior scholars concerned about omitted variable 
bias could thus consult the ITCV and interpret it with the controls included in their studies, 
thereby perhaps ameliorating the necessity for infeasible instrumental variable models.

ITCV decision tree.  In Figure 3, we provide a decision tree that helps explicate when the 
ITCV is appropriate, when to consider alternative techniques, and under what conditions 
scholars might suggest the causal inference of their relationship is unlikely biased from omit-
ted variables. The purpose of Figure 3 is not to necessarily provide an exhaustive overview 
of the ITCV but rather to help scholars think through whether and when the ITCV may prove 
insightful.

As we show in the decision tree in Figure 3, the first step in applying the ITCV involves 
considering whether confounding variables may exist in a given relationship. Most relation-
ships management scholars study are endogenous and thus could feature a problematic omit-
ted variable (Hamilton & Nickerson, 2003; Semadeni et al., 2014), but this is not always the 
case (e.g., political ideologies, birth order, personality traits). If there is a potential for omit-
ted variable bias due to confounding variables, however, in Figure 3 we suggest scholars 
should then consider the nature of their data. Specifically, if the dependent variable is binary 
or the parameters are interaction terms, we submit that the ITCV is currently inappropriate. 
The RIR may prove useful in such circumstances, and it may provide more insight about the 
treatment effects underlying binary independent variables (Xu & Frank, forthcoming; Xu, 
Frank, Maroulis, & Rosenberg, 2019).

Finally, in Figure 3, we provide some guidance as to how management researchers might 
consider the values derived from the ITCV in situations when the technique is appropriate. 
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Specifically, we encourage scholars to interpret the output against existing control variables 
in their study, taking particular care to ensure to compare the ITCV values against partial 
correlations of control variables with the independent and dependent variables. If it appears 

Figure 3
Decision Tree of When to Employ the ITCV

Note. *It is important to reiterate that the ITCV represents the square root of the product of correlations between 
a potential omitted variable and both the independent and dependent variables. This is therefore the case when 
examining control variables as potential proxies for an omitted variable. Specifically, it is essential to compare the 
square root corr [control, y] times corr [control, x] against the ultimate ITCV value.
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as though there are no control variables with correlations that exceed the ITCV value, schol-
ars may suggest it is unnecessary to employ instrumental variable models. It is imperative to 
reiterate here that the ITCV does not absolve researchers from addressing omitted variable 
bias, but rather it provides some insight as to the extent of potential bias (Frank, 2000). It is, 
however, quite appropriate to question whether the tradeoffs associated with instrumental 
variables are beneficial in such a circumstance.

ITCV illustration study.  We now turn our attention to illustrating precisely how to cal-
culate the ITCV. Specifically, we examine the empirical estimation and descriptive statis-
tics from Gamache and McNamara (2019) to demonstrate how to compute and interpret the 
ITCV. We provide a step-by-step guide of how to use existing data and empirical analyses 
to compute the ITCV in the Stata command that Xu et al. (2019) created, although scholars 
can perform these same calculations using R code or the applications that are detailed on the 
website we link.

Gamache and McNamara (2019) theorize a negative relationship between unfavorable 
media reactions to a given acquisition announcement and the amount that executives spend 
on future acquisitions. In Column 5 of Table 2 in their study, Gamache and McNamara (2019: 
934) describe the coefficient of negative media coverage on subsequent acquisition spending 
as supporting their primary hypothesis (β = −0.238; SE = 0.100). As they describe, “for an 
omitted variable to invalidate our findings, it would need to be correlated at r > 0.17 with 
both negative media reaction and with subsequent acquisition spending” (Gamache & 
McNamara, 2019: 936).

In Figure 4, we display the Stata code scholars can use to calculate the ITCV, and we also 
depict the corresponding output. Given that the Stata code allows users to calculate the 
ITCV directly from their estimators, we requested the data corresponding to Model 5 in 
Table 2 from Gamache and McNamara (2019). As we show in Figure 4, calculating the 
ITCV in Stata simply involves typing -konfound varname- to calculate the ITCV value for 
any given variable of interest. In this case, the independent variable is called “negativeme-
diacoverage.” It is also important to specify the statistical significance level at which schol-
ars are interested in establishing a given causal inference by specifying the option -sig-. In 
this particular study, the authors use a threshold of α < 0.10, so we specified the option 
-sig(0.10)-. As depicted in Figure 4, the ITCV is calculated as 0.171, which is consistent 
with Gamache and McNamara (2019).

Gamache and McNamara (2019: 935) indicate that of their control variables, “only one 
(R&D spending) had a higher correlation than the impact threshold with [both focal vari-
ables].” Table 1 in their study (Gamache & McNamara, 2019: 932) demonstrates, however, 
that even this variable is not problematic because it is positively correlated with both nega-
tive media coverage and subsequent acquisition spending (rather than the requisite opposing 
signs). As we described in the previous sections, however, it is also imperative to take note 
of two elements that published management research that employs the ITCV has not yet 
recognized.

First, the ITCV represents the square root of the multiplication of correlations between an 
omitted variable and the independent or dependent variables. With this in mind, it is possible 
that the “Relative Size of Target” represents a control variable that also could exceed the 
ITCV value since the correlations between the control and focal variables are in opposite 
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directions and the square root of the product exceeds 0.17. That said, and second, all of the 
correlations depicted in Table 1 are zero-order, meaning the partial correlations between the 
variables are likely dramatically smaller than those reported. We thus used the data provided 
by the authors to examine the partial correlations between all of the covariates. The partial 
correlation between “Relative Size of Target” and negative media coverage is 0.03, and the 
correlation between this control and subsequent acquisition spending is -0.05. The absolute 
value of the square root of the product of these correlations is 0.04, which is notably lower 
than the ITCV value of 0.171. This means there are no control variables in the study that 
exhibit correlations stronger than an omitted variable would require to invalidate the causal 
inference.

Study 1: Content Analysis of Management Journals

Content Analysis Procedure

One aim of Study 1 is to examine the extent to which causal inferences in top management 
publications are likely to have been biased by an omitted variable. We focus on AMJ, JAP, 
JOM, and SMJ as prominent management journals that we suggest are representative of a 
broader array of outlets. First, we collected all of the empirical articles published in these 
journals in 2017 to account for the rise in scholarly attention to omitted variables, although 
we took care to ensure this year was reflective of other years in a supplementary confirma-
tory content analysis of SMJ in the years 2003, 2015, and 2016. We focused exclusively on 
relationships tested with empirical estimators that do not directly seek to attenuate bias from 
omitted variables (e.g., OLS, fixed/random effects, GEE), and we excluded those derived 
from estimators with a binary dependent variable or only interaction terms. We retained the 
“base models”—those with no or the fewest interaction terms—in each study to ensure the 
estimates represent the average marginal effect of the independent variable.

Figure 4
Demonstrating the ITCV Calculation

Note. As is apparent in the text produced by the -konfound- command, the ITCV represents the square root of the 
product of the two relevant correlations (i.e., the correlation between the omitted variable and the dependent variable, 
and the correlation between the omitted variable and independent variable). In this example, scholars seeking to 
compare control variables as proxies could either examine the square root of the product of these two correlations, 
or the product of the two correlations against −0.0291, which represents the product of the two correlations derived 
from the ITCV. It is important to reiterate that scholars should use the partial correlations in these calculations.
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Second, we captured several statistics about the estimators to calculate and interpret the 
ITCV. Specifically, we transcribed the unstandardized coefficients of independent variables, 
standard errors, and sample sizes—all of which are used to calculate the ITCV (Frank, 2000; 
Frank et al., 2013). We also recorded the number of control variables that exhibited higher 
correlations than the ITCV value for both our “Minimum Correlation” (controls correlated 
with both the independent and dependent variables) and “Path Correlation” (the square root 
of the path of the correlations) interpretations.7 We should reiterate, though, that we employed 
the conservative approach of examining zero-order correlations reported in the matrices in 
these published studies because we are unable to accurately convert everything to partial cor-
relations. Third, we computed the ITCV value for each statistically significant focal relation-
ship in our content analyses using the software Frank (2000) created.

Our final sample is comprised of 382 relationships between focal variables, which are 
derived from 92 unique articles.8 Two different coders—each of whom is an author of this 
study—separately analyzed each article. Another author of this study also performed the 
content analysis on subsamples of the articles to compare the outcomes from both of the cod-
ers. Any discrepancies in the ratings were discussed among the authors such that we reached 
a consensus in all circumstances, which was easily achieved because our content analysis 
procedure involved little-to-no individual discretion.

Content Analysis Results

Table 1 depicts the results of our content analysis. Panel A of Table 1 provides an overview 
of the number of studies that are potentially biased from an omitted variable based on our 
interpretation of the ITCV and covariates in the model. In this panel, we display four differ-
ent interpretations of the ITCV using measured covariates. In particular, we depict the per-
centage of the relationships in our content analysis that had at least one or two controls 
zero-order correlated higher with the dependent and independent variables than the ITCV 
(Minimum correlation), or controls for which the square root of the product of those correla-
tions is higher than the ITCV (Path correlation).

We focus primarily on the prevalence of two covariates higher than the ITCV value. We 
suggest this is an appropriate benchmark because it balances both an ardent approach to the 
ITCV with some degree of flexibility, assuming the measured covariates are theoretically and 
empirically strong indicators of both focal variables. Even more, this remains an incredibly 
conservative interpretation since these correlations still reflect the zero-order relationships 
with control variables rather than partial correlations, which are almost assuredly notably 
smaller. Our results in the columns “% Biased: Two Covariates” suggest 15.71% or 26.18% 
of the relationships we examined are potentially biased using the minimum correlation or the 
path correlation of the controls, respectively.

To put these ITCV values in perspective, we also depict the percentiles corresponding to 
the number of covariates correlated with the independent and dependent variables at greater 
levels than the ITCV value for all the relationships in our content analysis (Panel B of 
Table 1). Again, we reiterate these percentiles reflect the number of control variables with 
zero-order correlations higher than the ITCV value, which is decidedly conservative com-
pared to the partial correlations. The percentiles depicted in Panel B demonstrate that the 
median study does not have any covariates correlated higher than the ITCV value. In fact, for 
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the minimum correlation (path coefficient) approach, the 75th percentile of ITCV values 
reflects only 1 (2) such covariate in any given study and the 90th percentile reflects approxi-
mately 2 (3) such covariates. Put plainly, a vast majority of the covariates in any given model 
are not correlated with the independent and dependent variable at values greater than the 
ITCV. Although we do not report this in Table 1, fewer than 5% of the relationships we study 
have a problematic omitted variable if we assume omitted variables exhibit the same corre-
lational properties as the average control variable (rather than the one or two strongest).

Panel C in Table 1 illustrates the ITCV values we calculated across the 382 relationships 
in our content analysis and depicts the thresholds at different percentiles. The median ITCV 
value is 0.245. This means, on average, any given relationship is potentially biased if there is 
an omitted variable partially correlated with the independent and dependent variables at 
0.245 or greater. Alternatively, the 10th percentile value for an omitted variable is 0.046, 
which means approximately 10% of the studies in our sample were potentially biased owing 
to an omitted factor that requires a correlation with both focal variables at only 0.046, after 
controlling for shared covariance with all of the controls. At the same time, the 90th percen-
tile value for the ITCV is 0.597, meaning approximately 90% of the relationships in our 
sample were biased if an omitted variable existed that is correlated with both focal variables 
at 0.597 or greater, after partialling out shared covariance with all of the controls.

Content Analysis Discussion

To help put all of these ITCV values in perspective, it might prove instructive to examine the 
typical correlations between focal constructs as reported in meta-analyses, which present the 
aggregate effect sizes across several studies. For instance, scholars can determine whether an 
ITCV value of 0.245—the median in our content analysis—seems feasible by consulting the 
typical effect sizes reported in meta-analyses on the topic or on conceptually related con-
structs. In strategic management research, meta-analyses overwhelmingly report zero-order 
correlations between focal constructs that are lower than even the 10th percentile ITCV value 
of 0.046 (Carnes, Xu, Sirmon, & Karadag, 2019; Dalton, Daily, Certo, & Roengpitya, 2003; 
Jeong & Harrison, 2017).9 Stated bluntly, in strategy research, the zero-order correlations 
between variables that have theoretically motivated relationships often fall below the 10th 
percentile ITCV value. With this in mind, it is hard to imagine many omitted factors that 
would exhibit partial correlational properties that exceed these values.

In micro-oriented research, however, scholars often find zero-order correlations more 
consistent with the median ITCV value we report (Chamberlin, Newton, & Lepine, 2017; 
Dulebohn, Bommer, Liden, Brouer, & Ferris, 2012; Kish-Gephart, Harrison, & Treviño, 
2010; Podsakoff, Whiting, Podsakoff, & Blume, 2009). Accordingly, based on our content 
analysis, it appears as though omitted variable bias is potentially more pronounced in micro-
oriented research. Again, though, these relationships reported in meta-analyses reflect zero-
order correlations that are almost certainly inflated compared to their partial correlation 
counterparts. It is also important to indicate that our content analysis reveals a higher median 
ITCV value for micro research (0.310) than the overall median (0.245) or macro scholarship 
(0.171).

Taken together, our content analysis suggests that the causal inferences of most empirical 
relationships are unlikely biased from an omitted variable, even using perhaps unrealistically 
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stringent interpretations of the ITCV. Assuming an omitted variable has approximately as 
much predictive validity on the independent and dependent variables as the two most impact-
ful controls and that this omitted variable is not correlated with anything else in the model 
except the independent and dependent variables, our content analysis suggests that about 
26% of published relationships might feature biased causal inference. If omitted variables are 
not as impactful as the strongest two control variables, however, the portion of potentially 
biased relationships would be notably lower than 26%. In the next section, we employ simu-
lations to determine the extent to which potential omitted variable bias might necessitate 
instrumental variable techniques as well as whether this represents a productive “solution” to 
potential bias.

Study 2: Simulations of Omitted Variables

In Study 1, we based our interpretation of potential omitted variable bias on the prevailing 
technique in the literature—correlations with measured covariates. We recognize, however, 
that such an interpretation requires scholars to assume that control variables are both appro-
priate and representative of some of the strongest confounding relationships. Accordingly, 
in this section, we specify simulations to gain a more precise view of when omitted vari-
ables appear to influence causal inference. Our aim in these simulations is twofold. First, we 
seek to better understand the impact on causal inference from omitted variables using effect 
sizes of these confounding factors informed by our content analysis. Second, we expand 
extant simulations on endogeneity (e.g., Semadeni et  al., 2014) to gain a more realistic 
assessment of omitted variable bias rather than all potential sources of endogeneity modeled 
simultaneously.

Simulation Procedure

We specify our simulations using a procedure informed by protocols implemented in the 
growing stream of management research that uses simulations to investigate methodological 
questions (Certo, Busenbark, Kalm, & LePine, 2020; Certo et  al., 2016; Kalnins, 2018; 
Semadeni et al., 2014; Zelner, 2009). Given our focus on omitted variable bias, we respecify 
the Semadeni et  al. (2014) simulation on endogeneity, except we use values of omitted 
variables instead of values that represent all sources of endogeneity.

Data generation.  The first step in the simulation process involves generating variables 
with realistic properties and effect sizes (Certo et  al., 2020; Certo et  al., 2016; Semadeni 
et al., 2014). We thus created variables with 1,000 observations (i.e., a sample size of 1,000, 
although we varied this extensively in supplementary analyses and the results remained 
materially similar) from a correlation matrix with prespecified correlations, means, and stan-
dard deviations. In particular, we generated an independent variable of interest (x1), three 
control variables (x2-x4), a variable to omit from some of our empirical estimators (xomitted), 
an error term (e), and two instruments (iv1 and iv2).10 Consistent with the broader simulation 
literature (Certo et al., 2020; Certo et al., 2016), we set the means and standard deviations of 
all the independent variables and instruments to values of 1, and we established the mean of 
the error term at 0 and standard deviation at 2.44 (Semadeni et al., 2014).11
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We set the correlations between each of the independent variables to 0.20 since this value 
represents strong relationships between covariates that do not induce bias in the model (Certo 
et al., 2020; Semadeni et al., 2014). We set three different correlations between the instru-
ments and the x1 in order to reflect weak (r = 0.05), moderate (r = 0.15), and strong (r = 0.40) 
effect sizes (Cohen, 1992). The strong instrument condition represents the value Semadeni 
et al. (2014) incorporate in their simulation, and it affords an incredibly (and arguably unre-
alistically) efficient two-stage model. The weak and moderate instruments are perhaps more 
aligned with the values management researchers tend to encounter and are incrementally less 
efficient as the correlations decrease. The instruments are not correlated with the covariates 
in the model except what is explained by x1, and they are uncorrelated with the error term. In 
this way, the instruments are entirely exogenous. None of the covariates included in the 
model are correlated with the generated error term, although xomitted is subsumed into the 
predicted error term in non-fully specified models that do not include the xomitted parameter.

The primary distinction between our study and Semadeni et al.’s work is that we do not 
include xomitted in some of the models instead of correlating x1 and the entire residual. We thus 
test the impact of an actual omitted variable rather than the impact of all sources of endoge-
neity. We also vary the correlation between x1 and xomitted to reflect degrees of omitted vari-
able bias that we can induce in our models that do not include xomitted. In other words, we 
fluctuate the correlation between x1 and xomitted, and because we do not include xomitted in all 
models, higher correlations between these two parameters represent greater levels of omitted 
variable bias. Specifically, we increase the correlations between x1 and xomitted at values of 
0.00, 0.05, 0.10, 0.15, 0.25, and 0.40, each of which reflects correlations roughly consistent 
with some of the ITCV values we uncovered in our content analysis in Study 1. It is impor-
tant to note that xomitted remains correlated with y at the highest level regardless of whether it 
is correlated with x1, thereby making our simulation results conservative and perhaps even 
overstating potential bias.

After generating all of the covariates, instruments, and error term from a random draw, we 
create the dependent variable (y) as a function of each of these variables, including the vari-
able generated to reflect the error term. We set all the betas to 0.125, which represents a 
medium effect size that is realistic in management research and corresponds to a realistic 
level of explained variance for each of the parameters in the model (Certo et al., 2020; Cohen, 
1992). We selected these coefficient values to ensure the independent variable of interest (x1) 
is statistically significant approximately 66% of the time, which is explicated in the research 
on power and is incorporated in methodological simulations (Certo et al., 2020; Certo et al., 
2016; Cohen, 1992). Since y is not a function of our two instruments, the relationship between 
y and each instrument is explained only by the covariance between y and x1. While this is 
nearly impossible to achieve in practice, ensuring the instruments are perfectly exogenous is 
one benefit of simulations (Kennedy, 2008). In our final simulations, we repeat the entire 
process described here 1,000 times per condition, meaning the results we describe next rep-
resent the outcomes from 1,000 simulated data sets for each value selected.

Simulation outcomes.  After generating the data using the simulation procedure, we then 
turned our attention to the results from a series of empirical estimators. We employed three 
different analytical models—the first model is “Fully Specified” and includes the xomitted 
parameter such that there is no omitted variable; the second model is “Not Fully Specified” 
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and is potentially biased because it does not include the xomitted term such that there is omitted 
variable bias to some degree when the correlation between x1 and xomitted is not zero (since 
there is already a strong correlation between xomitted and y); the final model is a two-stage least 
squares (“2SLS”) instrumental variable technique designed to attenuate bias from omitted 
variables (Certo et al., 2016; Semadeni et al., 2014).

We examine the accuracy and potential bias of these analytic models with different speci-
fications by graphing the distribution of estimated coefficients across the 1,000 simulation 
iterations per condition. The purpose of analytical modeling and corresponding statistical 
inference is to provide a single parameter estimate that most accurately represents the true 
relationship between two variables over repeated samples (Cohen et al., 2003; Goldfarb & 
King, 2016; Wooldridge, 2010). In other words, the most appropriate question scholars can 
ask when interpreting their parameter estimate is whether it accurately reflects the relation-
ship between two variables if the model was repeated several times on different samples 
(Goldfarb & King, 2016). Although it is difficult to assess this likelihood in practice outside 
of statistical inference based on several assumptions (Cohen et al., 2003), one advantage of 
simulations is that we can create a sample and relationships with different observations but 
identical properties.

Accordingly, we report our results using graphics that depict the estimated x1 coefficient 
for each of the 1,000 simulation iterations for all of the conditions. We report the true rela-
tionship between x1 and y (i.e., the estimate produced in a fully specified model) with a solid 
vertical line. Figures with narrower distributions afford scholars more confidence about their 
estimates. In a perfectly ideal estimate, the median coefficient aligns with the true relation-
ship and features a normal distribution of coefficients.

Simulation Results

Table 2a depicts the graphical results corresponding to our simulation procedure. The column 
“corr[x1, xomitted]” in Table 2a displays the correlation between x1 and xomitted, such that non-
zero values represent at least some degree of potential omitted variable bias. The columns 
“OLS (Fully Specified),” “OLS (Not Fully Specified),” and “2SLS With Strong Instruments” 
refer to each of the estimators described in the previous section. We report summary statistics 
about the distribution of coefficients across our simulations in Table 2b, which also contains 
outcomes corresponding to the weak and moderate conditions of instrument relevance. This 
portion of the table lists the median, percentiles, and standard deviation of the 1,000 esti-
mated coefficients for each simulation condition.

As we illustrate in Panel A of Table 2a and b, the OLS models with and without the omit-
ted variable produce remarkably similar results in terms of the distribution of the coeffi-
cients. Both OLS models feature a median at approximately the true relationship. Moreover, 
the portion of coefficients with values at or below zero is almost exactly what we would 
expect, given the fact that we specified a nonzero relationship in a majority of the cases. This 
is anticipated since there is no potential omitted variable bias in the “Not Fully Specified” 
model because the correlation between x1 and xomitted is 0. By contrast, the 2SLS model does 
not feature a similar distribution of coefficients to either of the OLS models. While the 
median coefficient is aligned with the true relationship (i.e., the relationship is not biased), 
the distribution is far wider and includes values of zero or below much more frequently than 
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Table 2b

Simulation Results With Varying Levels of Omitted Variables

Regression Model Median 10th Pctile 25th Pctile 75th Pctile 90th Pctile SD

Panel A (r = 0.00)
  OLS (fully specified) 0.127 0.057 0.089 0.162 0.191 0.053
  OLS (not fully specified) 0.126 0.058 0.089 0.163 0.189 0.053
  2SLS with weak instruments 0.101 −1.882 −0.710 0.871 1.884 4.104
  2SLS with moderate instruments 0.133 −0.178 −0.023 0.279 0.436 0.239
  2SLS with strong instruments 0.128 0.009 0.071 0.185 0.239 0.091
Panel B (r = 0.05)
  OLS (fully specified) 0.126 0.058 0.092 0.161 0.193 0.051
  OLS (not fully specified) 0.133 0.065 0.098 0.168 0.201 0.051
  2SLS with weak instruments 0.101 −1.477 −0.603 0.810 1.751 1.819
  2SLS with moderate instruments 0.148 −0.190 −0.025 0.275 0.446 0.252
  2SLS with strong instruments 0.130 0.011 0.069 0.187 0.244 0.091

Table 2a

Simulation Results With Varying Levels of Omitted Variables

corr [x, Omitted 
Variable]

OLS (Fully 
Specified)

OLS (Not Fully 
Specified)

2SLS With Strong 
Instruments

Panel A
r = 0.00

Panel B
r = 0.05

Panel C
r = 0.10

Panel D
r = 0.15

Panel E
r = 0.25

Panel F
r = 0.40

Note. The solid line represents the true relationship (or specified coefficient) between x1 and y.

(continued)
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we specified in the simulation. This means that even though the median coefficient from the 
2SLS estimator is accurate, the model is also more likely to estimate inaccurate coefficients 
that are higher and lower than the true relationship. Indeed, the 10th and 90th percentiles of 
coefficients from the 2SLS model are 0.009 and 0.239, respectively; they are 0.057 and 0.110 
for the OLS models, respectively. Further, the more realistic instrument strengths, depicted 
by weak and moderate correlations, estimate coefficients that take negative values over 25% 
of the time and features a wildly dispersed distribution.

Panels B and C in Table 2a and b reflect low levels of correlations with an omitted vari-
able. In each of these panels, we observe that the median coefficients align relatively well 
with the specified true relationship in virtually all of the models. In fact, the median coeffi-
cient from both the fully specified OLS model and the 2SLS estimator are virtually identical. 
The median coefficient estimated by the not fully specified OLS model is higher than the true 
relationship, although this deviation is extremely slight (as depicted in Panels B and C and as 
evidenced by the fact that the differences between coefficients are not statistically signifi-
cant). At the same time, the distributions of both OLS models are remarkably consistent with 
one another (the standard deviations are identical), whereas the 2SLS remains wider (the 
standard deviation is almost twice as large as the OLS models). This is particularly the case 

Regression Model Median 10th Pctile 25th Pctile 75th Pctile 90th Pctile SD

Panel C (r = 0.10)
  OLS (fully specified) 0.122 0.057 0.088 0.159 0.193 0.053
  OLS (not fully specified) 0.137 0.072 0.103 0.172 0.206 0.053
  2SLS with weak instruments 0.071 −1.581 −0.604 0.906 2.102 2.886
  2SLS with moderate instruments 0.129 −0.170 −0.032 0.295 0.451 0.251
  2SLS with strong instruments 0.120 0.003 0.054 0.180 0.232 0.089
Panel D (r = 0.15)
  OLS (fully specified) 0.125 0.054 0.087 0.160 0.193 0.054
  OLS (not fully specified) 0.146 0.077 0.108 0.181 0.212 0.053
  2SLS with weak instruments 0.137 −1.846 −0.683 0.920 1.833 2.430
  2SLS with moderate instruments 0.121 −0.180 −0.026 0.283 0.414 0.233
  2SLS with strong instruments 0.128 0.013 0.066 0.186 0.241 0.091
Panel E (r = 0.25)
  OLS (fully specified) 0.129 0.056 0.092 0.165 0.196 0.054
  OLS (not fully specified) 0.163 0.092 0.126 0.195 0.227 0.052
  2SLS with weak instruments 0.113 −1.732 −0.719 0.855 2.075 2.580
  2SLS with moderate instruments 0.108 −0.196 −0.045 0.274 0.422 0.245
  2SLS with strong instruments 0.125 0.020 0.073 0.189 0.245 0.088
Panel F (r = 0.40)
  OLS (fully specified) 0.127 0.051 0.088 0.165 0.200 0.059
  OLS (not fully specified) 0.181 0.111 0.146 0.217 0.245 0.052
  2SLS with weak instruments 0.239 −1.750 −0.586 1.009 2.035 3.318
  2SLS with moderate instruments 0.129 −0.168 −0.022 0.291 0.429 0.235
  2SLS with strong instruments 0.127 0.011 0.065 0.188 0.242 0.091

Note. The column “SD” reflects the standard deviation of the estimated coefficients across all 1,000 simulations 
per condition. The percentiles reflect any denoted percentile for the estimated coefficients across those same 1,000 
iterations.

Table 2b (continued)
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as it relates to how often the coefficient is estimated at notably low and high values. We 
highlight in Panels B and C that the 2SLS estimates coefficients around 0.011 and below 
approximately 10% of the time and above 0.244 approximately 10% of the time as well. This 
wide distribution is even more pronounced when the instruments are weakly or moderately 
related to the independent variable, with the former even estimating a more biased coefficient 
than the model that is not fully specified. By contrast, both OLS models rarely estimate coef-
ficients this low or high.

Panel D in Table 2 depicts results for our models with a moderate correlation between the 
focal and omitted variables. In this condition, the non-fully specified OLS model begins to 
shift slightly to the right, meaning the median coefficient deviates upward marginally from 
the true relationship. As we depict for this OLS that is not fully specified, the median coef-
ficient is somewhat bimodal, but it is dragged slightly upwards by an uptick in estimates 
that barely exceed true relationship more than the relatively fewer directly below the true 
relationship. Again, though, this coefficient is not statistically different from the estimate of 
the true coefficient. The 2SLS estimates depict an accurate median coefficient, but the dis-
tribution is far wider and produces notably low and high estimates more often than the OLS 
counterparts. This is especially the case when the instruments are weak or moderate, as 
depicted in Table 2b.

Finally, Panels E and F in Table 2 display results corresponding to relatively high levels 
of omitted variables. These two conditions feature potential omitted variable bias, which is 
reflected by the graphics that demonstrate the median coefficient for the not fully specified 
OLS noticeably exceeds the true relationship. Indeed, the estimate from the not fully speci-
fied model is statistically significantly different than the fully specified OLS and the 2SLS 
model in both of these conditions. Notwithstanding these deviations, however, the distribu-
tion of coefficients from the not fully specified OLS model continue to more closely resem-
ble its fully specified counterpart to a much larger degree than does the 2SLS estimator. To 
this point, the standard deviation of the estimated coefficients from the 2SLS model remains 
almost twice as large as both OLS models and therefore features a much wider distribution. 
Interestingly, the 90th percentile of the coefficient for the biased OLS model is approxi-
mately the same as the 90th percentile in the 2SLS model (90th percentile = 0.24). Even 
more, the coefficient from the 2SLS model with less relevant instruments is even more 
upwardly biased than is the coefficient from the non-fully specified model. This is intriguing 
because the instruments remain entirely exogenous, therefore demonstrating the detrimental 
impact of weak instruments.

Discussion of Study 2

Taken together, the results from Study 2 help elucidate the practical relevance of the content 
analysis we performed in Study 1. As we highlighted in Study 1, our interpretations of the 
ITCV suggest that most published relationships from management journals do not feature 
substantive omitted variable bias in terms of causal inference. We reinforced this notion in 
Study 2. Indeed, the results from our simulations illustrate that omitted variables require rela-
tively high correlations with focal predictors to induce meaningful bias. And even when there 
is bias in the parameter estimate, the model is still incredibly more efficient than 2SLS with 
strong instruments, with distributions that closely resemble the perfectly specified model.
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Our simulation also illuminates how a potentially biased estimator performs compared to 
2SLS with instrumental variables that more closely align with what scholars are often able to 
locate in practice (i.e., the moderate and weak condition instruments). In fact, one could 
argue that these instrumental variables are still more appropriate than the types of instru-
ments available in conventional management data since they are perfectly exogenous. This is 
rarely (if ever) achieved in practice, and scholars suggest that the bias from endogenous 
instruments is remarkably more pronounced than the bias from weak instruments (Semadeni 
et al., 2014). Our simulations suggest that the potentially biased model is never significantly 
biased compared to 2SLS models with moderate or weak instruments but that these two-
stage models are dramatically less efficient and induce pervasive Type I and Type II errors 
relative to the not fully specified OLS technique.

Supplementary Simulation Procedures and Results

In our primary simulation described in the preceding section, we focused primarily on 
cross-sectional data and estimates derived from OLS and conventional 2SLS models. The 
reason we incorporated these conditions and corresponding estimators is to minimize the 
potential biases owing to other elements of the data (Kennedy, 2008). As econometricians 
routinely describe, limited (i.e., noncontinuous) dependent variables and/or nested (e.g., 
panel) data can create estimation biases owing to the nature of the types of models neces-
sary to accurately estimate parameters for these types of data (Greene, 2018; Kennedy, 
2008; Wooldridge, 2016).

At the same time, we recognize management scholars increasingly require data that do not 
adhere to the strict assumptions of OLS modeling, especially as it relates to panel data and 
limited dependent variables (Bowen, 2012; Shook, Ketchen, Cycyota, & Crockett, 2003). In 
supplementary analyses, then, we restructured our simulation procedure to accommodate 
these different types of data in order to determine whether omitted variable bias appears dif-
ferentially pronounced depending on the requisite analytic technique. In each case, we 
worked to maintain the general properties of our data (e.g., sample size, effect size, variance 
explained, etc.) while altering only the elements necessary to induce different types of data. 
Although we do not report the entirety of the results from these supplementary procedures 
owing to space limitations, we describe each type of supplementary analysis we employed 
and we summarize the extent to which the results converge with or depart from the primary 
estimation we describe above.

In one supplementary analysis, we created panel data in order to examine fixed and 
random effects estimators. We accomplished this by generating observations for 200 
“firms” over the course of 5 “years,” such that we maintain a sample size of 1,000. As 
research on panel data describes, we simulated each observation to feature a panel-level 
error term and a conventional error term, the latter of which is more similar to the error 
term in our primary simulation (Certo, Withers, & Semadeni, 2017; Hsiao, 2014). 
Interestingly, our results from this simulation procedure for both fixed and random effects 
are almost identical to what we report, except even stronger omitted variables are required 
to bias the causal inference of the non-fully specified model. This is likely because the 
within-firm unexplained variance features less potential to confound with the independent 
and dependent variable owing to the fact that many characteristics of the firm are fixed 
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over time. Nevertheless, our simulation suggests omitted variable bias is even less pro-
nounced with panel data than cross-sectional data.12

In another set of supplementary analyses, we altered the distribution of the dependent 
variable and the corresponding estimator required to accommodate any particular distribu-
tion appropriate for the ITCV. We respecified our models to feature dependent variables that 
were truncated at zero (i.e., tobit estimation), count variables that were not overdispersed 
(i.e., Poisson estimation), count variables that were overdispersed (i.e., negative binomial 
estimation), and nonnormally distributed (i.e., quantile regression). In all cases, the results 
were virtually identical to what we report in our primary analyses. This is likely because the 
nature of correlations between variables—in this case, the correlation between an observed 
variable and an unobserved confounder—is not particularly sensitive to the distribution of 
the variable unless the distribution is imposed by transforming the variable (e.g., a ratio) 
(Certo et al., 2020).

Discussion and Implications

The goal of our research was to examine the extent to which omitted variables appear to bias 
statistical inference in empirical management research. While management scholarship on 
omitted variable bias and empirical work that references it have increased over the last 
couple decades, a growing consensus suggests techniques used to attenuate bias from omit-
ted variables are difficult to implement and can often create more estimation problems than 
they resolve (Certo et al., 2016; Semadeni et al., 2014). We thus argue it is imperative to 
better understand the influence of omitted variables in management research. To this end, 
we first examined empirical relationships published in AMJ, JAP, JOM, and SMJ and ana-
lyzed them using the ITCV. We aimed to determine the likelihood that the causal inference 
of any given relationship was biased from an omitted variable. We consulted the ITCV and 
applied a variety of stringent interpretations to its value. With these values in mind, we then 
respecified the simulation Semadeni et al. (2014) employed to better capture the salience of 
omitted variable bias.

Implications and Contributions

Biased causal inference from omitted variables.  One revelation from our study is that not 
all omitted variables appear to bias statistical or causal inference in meaningful ways. Our 
analysis of empirical articles published in a variety of top management journals illustrates 
that the majority of the statistical relationships derived from models not designed to address 
omitted variables are not apt to feature biased causal inference. To this point, fewer than 5% 
of published relationships featured biased causal inference if we conceptualize an omitted 
variable as having the same correlation properties as the average control in a study. Even 
more, our reasonably conservative interpretation of the ITCV suggests approximately 26% 
of relationships published in these journals were potentially biased by an omitted variable.

We recognize that we draw conclusions about the prevalence of omitted variable bias in 
management from published studies, which may result in inaccurate assessments since we do 
not know the true relationships between variables. This is why some of the scholarship in the 
area employs simulations that allow scholars to establish relationships between observed and 
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omitted variables (Certo et al., 2016; Semadeni et al., 2014). The results from our simulations 
suggest that omitted variable bias is not remarkably pronounced except when the omitted 
variable is highly correlated with structural parameters. As we illustrate in Table 2a and b and 
describe above, an omitted variable requires a high correlation with independent and depen-
dent variables to produce a distribution of coefficients that deviates noticeably from a fully 
specified OLS model.

Conceptualizing omitted variables.  An important implication from our research involves 
the nature of omitted variables and what they entail. Stated plainly, our study illustrates that 
not all omitted variables are created equally and that certainly not all omitted variables invali-
date causal inference. Although we agree with the prevailing notion in the literature that most 
relationships management scholars study feature omitted variables (Hamilton & Nickerson, 
2003), our findings suggest that not all of these omitted variables are problematic. In fact, our 
content analysis reveals that omitted variables would need correlations with structural vari-
ables at levels higher than most focal constructs in management research to bias causal infer-
ence. Even more, the ITCV value reflects partial correlations, whereas management scholars 
almost always report zero-order correlations that are higher than their partial counterparts.

Our study therefore highlights three important dimensions scholars should consider con-
cerning omitted variables. First, it is imperative to consider what potential omitted variables 
might exist that exhibit strong enough relationships to induce empirical bias. As we contend 
in this study, the ITCV provides a tangible benchmark that scholars can use to determine a 
threshold magnitude. But it is incumbent on researchers themselves to think theoretically 
about what variables could even possess the requisite correlations. Second, researchers can 
consult control variables and think extensively about whether they are analogous to potential 
confounding factors, weaker than a conceptualized omitted variable, or stronger than a vari-
able that may be omitted from the model. We provided several potential interpretations 
scholars can use for incorporating controls as proxies for omitted variables. Finally, it is para-
mount to think more extensively about the directionality of the correlations with omitted 
variables and how that may influence results. This is an important implication because only 
one study to our knowledge has described how the correlation with omitted variables can 
suppress or enhance estimated relationships (Certo et al., 2016).

Empirical estimators and model selection for macro and micro research.  Another impor-
tant implication from our research involves the veracity of “biased” OLS models relative to 
their instrumental two-stage counterparts. As we highlighted throughout this study, scholar-
ship on omitted variable bias often promotes two-stage instrumental variable techniques as 
the premier solution for attenuating bias from endogeneity (Bascle, 2008; Kennedy, 2008; 
Stock et al., 2002; Wooldridge, 2010). At the same time, this research continues to highlight 
that such models can be problematic because they are inefficient and can produce more bias 
than OLS unless they adhere to strict and often unattainable standards (Certo et al., 2016; 
Larcker & Rusticus, 2010; Semadeni et al., 2014). Econometricians have therefore cautioned 
against defaulting to two-stage instrumental techniques unless absolutely necessary (Ken-
nedy, 2008).

Our results in Table 2a and b corroborate these potential problems with instrumental vari-
able modeling. As we illustrate with the distributions of coefficients across our simulations 
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and show with descriptive statistics, the 2SLS technique is indeed remarkably less efficient 
than the fully specified or not fully specified OLS counterparts. In other words, the 2SLS 
model is more likely to predict coefficients at more extreme ends of the high and low tail than 
either OLS model (including the model with potential omitted variable bias). We uncovered 
these distributions even in our simulation with strong instruments that are completely exog-
enous. In our 2SLS models with weak and moderate instruments that are still entirely exog-
enous, we find that the 2SLS model can estimate more biased coefficients than a not fully 
specified OLS model as strength of the omitted variable increases.

The results from our simulations raise questions as to whether two-stage instrumental 
variable techniques are more consistent than potentially biased OLS (or other types of mod-
els that we describe in our supplementary analyses) except in the most pressing circum-
stances and when the instruments are incredibly relevant and exogenous. In practice, and 
given the correlations with control variables we observed in our content analysis, it is unlikely 
scholars will uncover instruments with such desirable characteristics. Scholarship in the 
econometrics literature has noted these issues with conventional instruments, and it has 
therefore begun to introduce alternative approaches to integrating tenable instrumental vari-
ables. For instance, Baum and Lewbel (2019) describe an increasingly pervasive technique 
that transforms heteroskedastic errors into appropriate instruments, and Le Gallo and Páez 
(2013) develop an approach that simulates instrumental variables that contain desirable prop-
erties. Although it is well beyond the scope of our present research to explicate these proce-
dures, they demonstrate the types of alternative estimation approaches econometricians are 
developing.

It is important to note that these procedures rely on the mathematical properties of instru-
ments rather than theoretical justifications. For decades, econometricians have argued that 
instrumental variable modeling is a mathematical exercise but that theory can help inform the 
underlying data generation practices. In management research, though, scholars often misin-
terpret this to mean that instruments must have theoretical justifications for their inclusion. 
Theoretically justifying heteroskedastic or synthetic instruments is implausible, which is 
consistent with the idea that the underlying mathematics are agnostic to any theory.

Notwithstanding this discussion, for a variety of reasons, we are hesitant to suggest schol-
ars move away entirely from conventional two-stage instrumental techniques. First, although 
the distribution of the coefficients in the 2SLS model is wider and the variance is higher than 
OLS, the median coefficient produced in our simulations from 2SLS was not biased except 
when the instruments were weakly correlated with the independent variable. Second, two-
stage modeling is the gold standard for addressing omitted variable bias (Kennedy, 2008; 
Wooldridge, 2010). In the presence of desirable instruments, two-stage techniques at the very 
worst provide researchers more information to determine whether there is potential omitted 
variable bias. Finally, two-stage estimation continues to get more efficient and less computa-
tionally costly.

We recognize that more micro-oriented scholarship rarely (if ever) encounters these issues 
with two-stage modeling and instrumental variables because these types of estimation proce-
dures have not yet been widely adopted in organizational behavior research. At the same 
time, the potential for omitted variable bias is still a critical concern for micro-related empiri-
cal research (Meade, Behrend, & Lance, 2009). As such, we caution against ignoring the 
benefits of the ITCV simply because its benefits for two-stage instrumental variable model-
ing seem irrelevant for this particular research domain. Instead, we contend that the ITCV 
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proves incredibly beneficial for this literature because it may provide some insight as to the 
nature of potential bias from an omitted variable that would otherwise involve speculation 
and considerable guesswork. Even more, it may allow organizational behavior scholars to 
avoid instrumental variable modeling, which would likely prove challenging to incorporate 
given the relative absence of unused variables that could be applied as instruments (Atinc 
et al., 2012). In sum, even though micro-oriented scholarship often does not address omitted 
variable bias via estimation procedures, the ITCV offers a mathematical tool for this research 
to empirically examine the veracity of parameter estimates, causal inference, and corre-
sponding effect sizes.

Using the ITCV in empirical research.  One particularly intuitive approach scholars can 
use to incorporate the ITCV in their studies to consider issues related to omitted variables and 
two-stage modeling is to simply consult the ITCV value after employing an estimator that 
does not explicitly account for omitted variable bias. If the ITCV is sufficiently high, schol-
ars can likely proceed without much concern for omitted variable bias. If the ITCV is not 
sufficiently high, we encourage scholars to then utilize two-stage modeling and appropriate 
instruments (see the decision tree in Figure 3). Naturally, scholars should still consider other 
sources of endogeneity (e.g., measurement error and reverse causality).

We must reiterate here that the ITCV only addresses causal inference and does not consider 
biased parameter estimates owing to an omitted variable. There is likely a range over which a 
given estimate may produce a nonzero coefficient, although the practical interpretation of that 
coefficient may change dramatically depending on the influence of an omitted variable. In 
fact, and as we describe in the appendix, the RIR can provide some insight as to what this 
range may entail. We therefore caution scholars against making definitive statements that sug-
gest their models are entirely unbiased from omitted variables because of an adequately high 
ITCV value. Instead, we encourage scholars to follow extant work in the area and focus the 
ITCV only on causal inference and general empirical support for a hypothesis.

Conclusion

Omitted variables are inherent in management scholarship, but our research demonstrates 
that their presence is not always associated with biased causal inference. Indeed, not all omit-
ted variables create substantive bias, and oftentimes the proposed estimation remedy is more 
detrimental than the bias from confounders themselves. Our goal in this study was to help 
scholars use the ITCV technique to think more exhaustively about the nature of omitted vari-
ables in empirical analyses, especially as it relates to two-stage instrumental variables 
techniques.

Appendix 1

RIR

The RIR value is calculated using identical inputs to the ITCV, but it deals with hypothetical 
changes to the underlying data rather than correlations (Frank et al., forthcoming; Xu et al., 
2019). In other words, whereas the ITCV deals with correlations, the RIR quantifies how 
counterfactual changes in the data might invalidate causal inference. The RIR is particularly 
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helpful either as an alternative sensitivity test to the ITCV or in situations when the ITCV is 
inappropriate (e.g., estimators with a binary dependent variable).

There are two different, yet interrelated, ways to interpret the RIR. Perhaps the most per-
vasive approach involves case replacement, which refers to how many treatment effects 
would need to be replaced with a null effect to invalidate causal inference. This interpretation 
is grounded in logical intuition, such that scholars typically determine whether the number of 
requisite overturned treatment cases appears reasonable. For instance, Busenbark et  al. 
(2017) examine the relationship between mentioning acquisitions (1) or not (0) as a potential 
use of proceeds from seasoned equity offerings and analyst responses to acquisition announce-
ments. Busenbark et al. (2017: 2496) interpret this RIR by indicating “an omitted variable 
would need to overturn the relationship between [mentioning an acquisition] and analyst 
downgrades in 49 of the currently significant cases. This seems unlikely.”

Alternatively, the RIR can indicate how much of a given effect size must be biased in 
order to overturn an otherwise statistically significant parameter estimate (Xu & Frank, 
forthcoming; Xu et al., 2019). This interpretation can account for all sources of bias insofar 
as it provides a percentage-based threshold of the effect size that must feature bias from any 
source of endogeneity, not limited to exclusively omitted variables (Frank et al., 2013). For 
instance, if a standard error of a parameter estimate is 3, this means that any coefficient over 
the value of approximately 6 would produce a statistically significant causal inference at p < 
0.05. In this same example, if the coefficient is 10, the RIR would suggest that 40% of the 
coefficient would need to be biased in order to invalidate the causal inference. Scholars can 
then determine if including any given control variable moves the focal coefficient by a per-
centage that exceeds the RIR value. Doing so will allow the researcher to reason whether it 
seems likely an omitted variable might exist that could influence the focal coefficient by the 
percentage value calculated from the RIR.

The RIR is calculated in Stata using the same -konfound- command at the ITCV. In fact, 
calculating the ITCV in Stata includes the RIR by default. In cases in which the dependent 
variable is binary, scholars can specify the -non_li(1)- option to interpret the percentage bias 
to invalidate an inference for a nonlinear model. As Xu et al. (2019: 533) note, “for a nonlin-
ear model, the impact of an omitted variable necessary to invalidate an inference should not 
be used, because it is correlation based and thus applies only to linear cases. The percent bias 
to invalidate the inference can still be applied in this case.” In the nonlinear cases, the RIR is 
calculated using the average marginal effect. Given its potential to complement and supple-
ment the ITCV, the RIR is an important additional consideration when examining potential 
omitted variable bias.
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Appendix 2

The Role of Directionality in Omitted Variable Bias

Correlation Between the Omitted Variable  
and the Dependent Variable
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Enhances the effect
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Suppresses the effect

Negative coefficient: 
Suppresses the effect

Negative coefficient: 
Enhances the effect

Negative

Positive coefficient: 
Suppresses the effect

Positive coefficient: 
Enhances the effect

Negative coefficient: 
Enhances the effect

Negative coefficient: 
Suppresses the effect

Note. The terms positive coefficient and negative coefficient refer to the direction of the estimated relationship.

As we describe in the figure above, the direction of the relationship with the confounding vari-
able plays an integral role in whether omitted variable bias represents an enhancing or sup-
pressing effect. The ITCV is appropriate when a confounding variable enhances the relationship 
between the independent and dependent variable by possessing a product of correlations that 
it is in the same direction as the focal relationship (Frank, 2000). This is because the ITCV is 
concerned with whether a given causal inference is due to an inflated relationship, not whether 
a given parameter estimate is completely accurate. At the same time, this is not to suggest that 
suppression effects are more trivial than enhancement effects, as suppression can induce criti-
cal Type II errors that undermine causal inference in different ways.
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Notes
  1.	 We focus on 2017 for all the journals, but we examine the years 2015 and 2016 in SMJ to ensure 2017 is 

representative of a longer time horizon. Our results suggest that 2017 indeed captures sustained trends with respect 
to omitted variables.

  2.	 We did not include JAP in this overview because micro-oriented research rarely explicitly examines 
endogeneity, and it instead more often focuses on characteristics of the measures underlying the variables.

  3.	 Please visit konfound-it.org for an overview of several resources pertaining to the ITCV. This website 
details Stata code, R code, and embedded application, and an Excel spreadsheet.

  4.	 More specifically, and as we describe next, this ITCV value represents the square root of rx,cvry,cv. 
Accordingly, an omitted variable is problematic for causal inference if its correlation with the independent variable 
multiplied by the correlation with the dependent variable is greater than the square root of the ITCV.

  5.	 Although we recognize the value of estimating a precise and accurate parameter coefficient, manage-
ment research is almost exclusively predicted on statistical inference and the likelihood a relationship is nonzero 
(Frank, 2000; Goldfarb & King, 2016; Starbuck, 2016). We therefore suggest the ITCV represents a practical tool 
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for management scholars rather than an entirely comprehensive technique to determine precise parameter estimates.
  6.	 It is not impossible to apply the ITCV to interaction terms, but it requires adjustments of the formula that 

are well beyond the scope of our research and are still being investigated by the scholars who created the ITCV and 
the RIR.

  7.	 We did not include fixed effects variables, such as dummy indicators of the year or identifier, as control 
variables. This means our analyses are slightly more conservative than the actual ITCV values since including these 
variables as controls would very slightly increase the ITCV.

  8.	 Overall, we examined 418 total articles across all four journals in 2017 (90 in AMJ, 89 in JAP, 98 in 
JOM, and 141 in SMJ). Of these, 319 of the articles were empirical and 99 were conceptual and/or reviews of a 
content domain. Within these 319 empirical articles, 72 already accounted for endogeneity, and 148 were not appro-
priate for the ITCV for all the reasons we describe in our overview of the technique, leaving us with 92 total articles 
to examine. Within these 92 articles, there were 382 testable relationships that we summarize in Table 1.

  9.	 Although examining all published strategy meta-analysis is beyond the scope of the present study, we 
notated the correlations between substantive constructs for each of the strategy meta-analyses referenced here. The 
average correlation for all the variables in these studies is 0.038, the absolute average is 0.062, and the standard 
deviation is 0.075.

10.	 We include three control variables to ensure our focal parameter does not constitute all of the variance 
explained in the model. Adding or removing control variables from our simulation does not impact any of the find-
ings or implications from Study 2.

11.	 Although it is essential that the mean of the error term maintains a value of 0 to avoid violating an 
assumption of OLS, we can vary the standard deviation of the error term to suit the parameters of our simulation. We 
retain a value of 2.44 to ensure our procedure is consistent with the Semadeni et al. (2014) simulation (we requested 
the value they used for the standard deviation of the error term). It is important to note, however, that the value for 
the standard deviation of the error term works only to help set a realistic degree of variance explained by the model 
and does not alter our results in any meaningful way. In supplementary analyses, we used a value of 2.0 to mirror 
the Certo et al. (2020) procedure and the results are nearly indistinguishable from what we report here.

12.	 We reserve our simulations constructed with panel data as unreported supplementary analyses for two 
reasons. First, we seek to structure our simulation as closely to the Semadeni et al. (2014) procedure as possible, so 
as to more directly compare the impact of an omitted variable against all sources of potential endogeneity. Semadeni 
et al. (2014) specify their simulation as cross-sectional, so our imperative is to do so as well. Second, the intent 
of our research is to examine the pervasiveness and impact of omitted variables. Introducing panel data violates 
the i.i.d. assumption of OLS regression and therefore induces other potential biases into the estimates, even when 
employing a fixed or random effects estimator, thereby disallowing us to isolate the impact of exclusively omitted 
variables.
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